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Abstract

This document explores the potential of quantum computing for solving linear systems
of interest in engineering. In particular, we focus on heat conduction as a paradigmatic
example in thermal science. Conceived as a living document, it will be continuously updated
with experimental findings and insights for the research community in Thermal Science.
By experiments, we refer both to the search for the most effective algorithms and to the
performance of real quantum hardware. Those fields are currently evolving rapidly, driving
a technological race to define the best architectures. The development of novel algorithms
for engineering problems aims at harnessing the unique strengths of quantum computing.
Expectations are high, as users seek concrete evidence of quantum supremacy – a true game
changer for engineering applications. Among all heat transfer mechanisms (conduction,
convection, radiation), we start with conduction as a paradigmatic test case in the field
being characterized by a rich mathematical foundation for our investigations.
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1. Introduction

Quantum computing could transform fields like computational science and engineering
with possibly strong impact on material science, renewable energy and even finance by
revolutionizing data processing. The ambitious goal is quantum advantage possibly outper-
forming classical computers in specific tasks. Here, in order to overcome this challenge, we
focus on solving the heat conduction equation numerically as a paradigmatic application of
quantum computing within the heat transfer and thermal science community. In most of
the engineering applications, the computational domain - where heat conduction occurs - is
discretized by a spatial mesh with N nodes. State-of-the-art CFD simulations can utilize up
to 780 billion mesh cells on advanced supercomputers. For example, a study documented
the use of a grid with 780 billion cells (N ∼ 7.8× 1011) on Tianhe-2, leveraging over 1.376
million heterogeneous cores [1]. This is where – potentially – a quantum advantage could
become interesting.

To better understand the potential quantum advantage, let us first recall how a classical
computer processes real numbers. A common approach is to represent them in scientific
notation as µ×10ν , where 1 ≤ µ < 10 is the significand (or mantissa) and ν is the exponent.
The precision by which a classical computer can store a real number depends on the number
of bits available for encoding the mantissa. To illustrate this, consider a simplified scenario
where the computer has only three bits to store the mantissa. With N = 23 = 8 possible
binary configurations, the mantissa must be approximated to the closest available value
within the range µ ∈ [1, 10[. A reasonable discretization scheme is µ ∈ {µ0, µ1, . . . , µN−1},
where the generic significand can be expressed as µb = 1 + (10− 1) b/23 and b is an integer
from 0 to 23 − 1 included. The difference between two consecutive significands, namely
the precision, is ∆µ = µb+1 − µb = (10 − 1)/23 = 1.125. Naturally, real-world classical
computers operate with far greater precision. A widely used standard for representing real
numbers is the IEEE 754 double-precision floating-point format, which allocates 64 bits per
number. Within this format, 53 bits are dedicated to encoding the mantissa, leading to a
much finer discretization (10− 1)/253 ≈ 1× 10−15. This implies that, in a classical system,
53 bits are used solely to encode the significand of a single real number. More generally,
given nclassic available classical bits, the number of real numbers that can be stored (with
double-precision) is given by

Nclassic = ⌊nclassic/64⌋ , (1)

where ⌊·⌋ denotes the floor function, which returns the largest integer less than or equal to its
argument. This constraint on classical storage is a key limitation that quantum computing
aims to overcome.

The key distinction lies in the following fundamental property: a quantum system with
n qubits has

N = 2n (≫ n typically) (2)

computational basis states, similar to a classical system. However – and this is the crucial
difference – a quantum system can exist in a superposition of all these basis states, with
each state weighted by a complex probability amplitude. These amplitudes, which may be
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continuous real (or complex) numbers, determine the probability of measuring each basis
state upon observation. As a result, a quantum computer can encode and manipulate a num-
ber of real values that is at least proportional to the number of computational basis states.
This exponential scaling in the number of quantum states provides a potential advantage
over classical systems. However, the actual precision of stored information is constrained
by interactions with the environment, which cause decoherence, i.e. a process that disrupts
quantum superpositions and limits computational performance. Moreover, there is a limit
in the measurement resolution due to the actual hardware. To fix ideas, let us consider
the following example: In November 2024, IBM released the IBM Heron R2 processor with
n = 156 qubits, which could – in principle – accommodate N = 2156 ∼ 1046 field values on
a mesh. On the other hand, a classical computer with the same number of classical bits
nclassic = 156 can store at most Nclassic = 2 real field values in double-precision. Hence it is
clear that quantum computing may pave the way to significantly larger meshes than those
currently used.

However, there is a problem. Currently, we are in the noisy intermediate-scale quantum
(NISQ) era, with processors of up to 1,000 non-fault-tolerant qubits. Overcoming noise and
decoherence remains a significant challenge, making it crucial to align quantum hardware
advancements with specific application needs. In reality, the current NISQ computers are
still rarely advantageous over classical computers for most of applications, which therefore
must be investigated individually. Let us focus here on solving the heat conduction equation.

1.1. Philosophical remark

Before proceeding further, it is worth first discussing how an ideally reversible quantum
computer can model an irreversible phenomenon. To clarify this point, let us consider an
ideal quantum computer as a specific example of a generic quantum system. Among all
possible quantum systems, a particularly illustrative one is the Schrödinger equation for
a free particle in one dimension: i ℏ ∂tΨ = p̂/(2m)Ψ = −ℏ2/(2m) ∂2zΨ or equivalently
∂tΨ = i ℏ/(2m) ∂2zΨ, where Ψ represents the wavefunction of the quantum system. This
equation is classified as dispersive, meaning it supports wave-like solutions with frequency-
dependent phase velocities. Its purely imaginary time evolution results in phase oscillations
without any decay. In other words, the Schrödinger equation is not dissipative – it describes
reversible, wave-like behavior rather than an irreversible process. By contrast, the heat
conduction equation, which we aim to model here, namely ∂tT = D∂2zT , is inherently
dissipative.

In an ideal quantum computer, where there is no interaction with the environment,
state evolution is unitary and therefore reversible. The only source of irreversibility
in such a system is measurement.

The key idea, therefore, is to construct a reversible quantum evolution that, upon mea-
surement, collapses onto the target dissipative dynamics. The measurement in quantum
mechanics consists of three ingredients: (i) the state, (ii) the observable and (iii) its expec-
tation value. The state of a system is represented by its wavefunction Ψ, which contains all
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the information about the system. The observable refers to any physical quantity that can
be measured, such as position, momentum, or energy, and it is represented by an operator
Ô. The expectation value of an observable is the average result one would obtain from many
measurements of that observable, and it is calculated by taking the inner product ⟨Ψ|Ô|Ψ⟩,
where Ô is the operator corresponding to the observable. When an observable is measured,
the system’s wavefunction collapses to one of the eigenstates of the corresponding opera-
tor, and the measurement result will be one of the associated eigenvalues. The expectation
value is the weighted average of these eigenvalues, with the weights being the probabilities
of the system being found in each eigenstate. Hence the measurement process in quantum
mechanics is often used as a way to model irreversible phenomena.

2. Heat conduction equation

Let us consider the one-dimensional heat conduction equation, as a paradigmatic appli-
cation to the heat transfer community, namely

∂T

∂t
= D

∂2T

∂z2
, (3)

with the function T = T (z, t) being the local temperature, and the positive coefficient D
the thermal diffusivity of the medium. Let us consider a constant diffusivity, a given initial
profile T (z, 0) and the periodic spatial boundary condition. This problem can be solved
analytically using the Fourier transform and it is usually trivial for most of the current
classical numerical techniques.

Let us solve the previous equation by the classical finite-difference (FD) method, which
consists in solving differential equations by approximating derivatives with finite differences.
Both the spatial domain and time domain are discretized by a regular mesh: the unknown
function T is evaluated at the generic l-th mesh node and at the τ -th time step, namely
T τl = T (zl, tτ ) where zl = l∆z with 0 ≤ l ≤ (N − 1) and tτ = τ ∆t with 0 ≤ τ ≤ Nt (τ = 0
identifies the given initial profile). The quantities ∆z and ∆t are the spatial and temporal
partitions of the grid, while N is the number of space mesh nodes and Nt is the number of
time steps. Let us use a fully implicit FD scheme that yields the stability of the solution for
arbitrary diffusivity of the equation and the grid size:

T τ+1
l − T τl

∆t
= D

T τ+1
l−1 − 2T τ+1

l + T τ+1
l+1

∆z2
. (4)

The previous formula can be reformulated as

−r T τ+1
l−1 + (1 + 2 r) T τ+1

l − r T τ+1
l+1 = T τl , (5)

where r = D∆t/∆z2 is the (dimensionless) numerical Fourier number. Let us define a new
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operator Ĉ as

Ĉ =



(1 + 2 r) −r 0 0 . . . −r
−r (1 + 2 r) −r 0 . . . 0
0 −r (1 + 2 r) −r . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . −r (1 + 2 r) −r 0
0 . . . 0 −r (1 + 2 r) −r
−r . . . 0 0 −r (1 + 2 r)


, (6)

which can be used to formulate a linear system of equations which is consistent with Eq.
(4). In particular, using the operator Ĉ defined by Eq. (6), Eq. (4) becomes in compact
form

Ĉ T⃗+ = T⃗ , (7)

where T⃗+ stands for T⃗ τ+1 =
(
T τ+1
0 , T τ+1

1 , T τ+1
2 , . . . , T τ+1

N−1

)T
and T⃗ stands for T⃗ τ = (T τ0 , T

τ
1 ,

T τ2 , . . . , T
τ
N−1

)T
. Clearly the inverse of operator Ĉ can be used as a time-progress operator

for the temperature profile subject to heat conduction, namely

T⃗+ = T⃗ (t+∆t) = Ĉ−1 T⃗ , (8)

which can be also generalized by the following formula

T⃗ (t+ τ ∆t) = (Ĉ−1)τ T⃗ . (9)

In the following section, for the sake of simplicity and without loss of generality, we will
focus on Eq. (8) only.

2.1. Discrete Fourier Transform (FT)

The one-dimensional heat conduction problem defined by Eq. (7) can be solved numeri-
cally by means of the direct method given by Eq. (8), which requires to invert the operator
Ĉ of Eq. (6). There are also other alternative methods for special cases, which involve some
transformations. When discretizing the heat equation using finite differences, the resulting
matrix Ĉ is diagonalizable by the Fourier transform only if the problem involves a periodic
domain, leading to a circulant matrix structure, as in the present one-dimensional case.
In this case, the discrete Fourier Transform (FT) efficiently diagonalizes Ĉ, which seems
quite natural also in the context of quantum computing [2]. For non-periodic boundary
conditions, such as Dirichlet or Neumann, Ĉ becomes a standard tridiagonal (non-circulant)
matrix; here, the discrete Sine Transform (ST) and discrete Cosine Transform (CT) serve
as the appropriate diagonalizing tools, matching the boundary constraints (Dirichlet for ST,
Neumann for CT). In more complex cases – such as variable coefficients, irregular domains,
or non-uniform grids – no standard transform diagonalizes Ĉ, and numerical methods like
eigen-decomposition or iterative solvers are typically used instead.

In the present one-dimensional example, because the mesh is regular and the domain
is periodic, the discrete FT efficiently diagonalizes Ĉ. In the usual mathematical notation,
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the discrete FT takes as input the column vector T⃗ , which can be defined by a proper
orthonormal basis e⃗0, e⃗1, e⃗2, . . . e⃗N−1, namely

T⃗ =
N−1∑
l=0

Tl e⃗l, (10)

where Tl is the nodal value for the l-th mesh node and ∥e⃗l∥ = 1. The discrete FT outputs the

transformed data, a column vector of complex numbers ⃗̃T defined in the same orthonormal
basis, namely

⃗̃T =
N−1∑
k=0

T̃k e⃗k. (11)

Please note that using the subscript k instead of l in the previous expression is unessential
because the nodes are the same: it is just a matter of convention for making more evident
the meaning of this sum. Each component of the transformed data is defined as1

T̃k =
1√
N

N−1∑
l=0

Tl ω
kl
N , (12)

where
ωN = ei 2π/N , (13)

and the parameter i is the usual imaginary unit (i =
√
−1). Please note that the factor

1/
√
N in front of Eq. (12) is chosen to realize a unitary transformation by construction,

which allows to implement this transformation by a unitary quantum circuit [2]. Moreover,
the positive sign of the argument of the exponent of Eq. (13) is quite common in the
quantum community and it implies an anti-clockwise rotation in the complex plane (Argand
plane). See Appendix E for details about the physical meaning of the discrete FT. It is also

useful to compute the wavenumber spectrum by the transformed field ⃗̃T , which describes
how the variance of the temperature field is distributed over different harmonic components.
In case of a classical field, the wavenumber spectrum p⃗ c is defined as

p⃗ c =
1

N
⃗̃T ⊙ ⃗̃T ∗, (14)

where ⊙ represents the Hadamard (element-wise) product and the superscript ∗ means the
complex conjugate. Another useful concept is the inverse transform, which is given by:

Tl =
1√
N

N−1∑
k=0

T̃k ω
−kl
N . (15)

1In some numerical routines, e.g. the “scipy.fft” function of the SciPy platform [3], the standard Fourier
transform is defined with regards to e−i 2π/N and without the prefactor 1/

√
N . It is possible to convert the

results based on the standard form to those in the present document, by (i) multiplying them by 1/
√
N and

(ii) taking the complex conjugate.
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The previous definition can be interpreted as a decomposition of the original field in Fourier
modes, i.e. rotations in the complex plane with wavenumber k from 0 to N − 1.

At this point, it is possible to introduce a matrix notation, which is more convenient
for solving the linear system of equations for heat conduction. Let us introduce the FT
operator ÛFT , where the generic component at the k-th row and at the l-th column is given
by 1/

√
N ωklN , namely

ÛFT =
1√
N



1 1 1 1 . . . 1
1 ωN ω2

N ω3
N . . . ωN−1

N

1 ω2
N ω4

N ω6
N . . . ω

2(N−1)
N

1 ω3
N ω6

N ω9
N . . . ω

3(N−1)
N

. . . . . . . . . . . . . . . . . .

1 ωN−1
N ω

2(N−1)
N ω

3(N−1)
N . . . ω

(N−1)(N−1)
N


. (16)

In this way, the vector ⃗̃T given by Eq. (11) and Fourier coefficients given by Eq. (12) can
be expressed as

⃗̃T = ÛFT T⃗ . (17)

It is worth to highlight that the adopted definition of the matrix ÛFT makes it a unitary
transformation, i.e. Û †

FT ÛFT = ÛFT Û
†
FT = I, where Û †

FT denotes the conjugate transpose of

ÛFT , (namely Hermitian transpose). The latter transpose is relatively simple to be computed
and it allows one to express the initial temperature profile of the heat conduction problem
as

T⃗ = Û †
FT

⃗̃T, (18)

Introducing the previous definition into Eq. (7) yields

D̂ ⃗̃T+ = ⃗̃T, (19)

where D̂ = ÛFT Ĉ Û
†
FT is a diagonal operator and the elements on the diagonal are the

eigenvalues of the operator Ĉ. In order to find these eigenvalues, let us apply the definition
given by Eq. (12) to the finite-difference formula given by Eq. (5) and let us use the same
nomenclature adopted in Eq. (7), namely

−rF
(
T+
l−1

)
+ (1 + 2 r) T̃+

k − rF
(
T+
l+1

)
= T̃k, (20)

where F (·) means the linear transform defined by Eq. (12), i.e.

F
(
T+
l−1

)
= FW

k =
1√
N

N−1∑
l=0

T(l−1) mod N ω
kl
N , (21)

F
(
T+
l+1

)
= FE

k =
1√
N

N−1∑
l=0

T(l+1) mod N ω
kl
N , (22)
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where mod is the modulo operation, which returns the remainder of a division. It is impor-
tant to highlight that this mod operation is essential because the adopted labeling based
on l goes only from 0 to N − 1. Simplifying FW

k yields

FW
k =

1√
N

N−1∑
l′=0

Tl′ ω
kl′+k
N = ωkN T̃k, (23)

where we set l′ = (l− 1) mod N which implies l = (l′ + 1) mod N . Proceeding similarly for
FE
k and substituting these results in Eq. (20) yields[

1 + 2 r − r ωkN − r ω−k
N

]
T̃+
k = T̃k. (24)

Recalling the Euler’s formula yields[
1 + 2 r − 2 r cos

(
2π k

N

)]
T̃+
k = T̃k. (25)

and consequently [
1 + 4 r sin2

(
π k

N

)]
T̃+
k = T̃k. (26)

Comparing Eq. (26) with Eq. (19), it is clear that D̂ is a diagonal matrix with the diagonal
elements equal to

D̂kk = 1 + 4 r sin2

(
π k

N

)
. (27)

It is easy to compute the inverse matrix by replacing the main diagonal elements of the
matrix D̂ with their reciprocals, namely R̂ = D̂−1. The latter can be used to express the
solution of the heat conduction problem as

T⃗+ = Û †
FT R̂ ÛFT T⃗ , (28)

which is an alternative route to Eq. (8).

3. Variational Quantum Eigensolver (VQE)

Quantum computing is intimately connected with quantum information and deeply
rooted in quantum physics. The rapid rate of progress in this field and its cross-disciplinary
nature have made it difficult for newcomers to obtain a broad overview of the most impor-
tant techniques and results [2]. There is still a lot of work to do in hardware and software
development before demonstrating any quantum computing supremacy.

Here we focus on solving a linear system of equations as a paradigmatic task for many
engineering problems. There are many computational strategies for solving a linear system
of equations by quantum computing, which are still an active field of research. Let us
start with the variational quantum eigensolver (VQE). VQE is a hybrid algorithm that
uses both classical operations and quantum operations to find the ground state (i.e. the
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stationary state of lowest energy) of a quantum system, which is designed to produce relevant
information for the original problem of interest. In our case, the first step is to design a
quantum system which allows one to derive the solution of the linear system of equations
of interest, i.e. Eq. (7). Variational quantum algorithms are promising candidates for
observing quantum computation utility on noisy near-term devices. For this reason, VQE
is implemented in most of the open-source software development kit, e.g. Qiskit (Quantum
Information Software Kit) by IBM [4].

3.1. Quantum data structure

First of all, before familiarizing with the data structure of a quantum computer, let us
recall some basics of binary coding, which is useful for both classical and quantum computing
systems. To represent a number in binary, every digit has to be either 0 or 1 (as opposed
to decimal numbers where a digit can take any value from 0 to 9). A decimal integer, e.g.
the already-mentioned index l which identifies the mesh node, can be decomposed in terms
of a binary number, which is represented by an equivalent bit string, namely

l =
n−1∑
b=0

βb 2
n−1−b. (29)

where βb ∈ {0, 1} is the value of the b-th computational unit in a binary computational
system with n (qu)bits. For example, the decimal number 6, sometimes indicated as 610 in
order to emphasize the basis number equal to 10, corresponds to the binary number 110, or
even better 610 = 1102. This means that each decimal integer d can be converted into an
equivalent sequence of bits βb in the binary numeral system, i.e. β0β1 . . . βn−1. Note that
the digital bits βb are listed according to the big-endian convention [2]. In the following, we
will use equivalently the decimal integer l or the corresponding bit string β0β1 . . . βn−1.

Let us move now to the data structure of a quantum computer. The building block of a
quantum computer is a qubit. A qubit is a two-level quantum-mechanical system, with many
states which are linear combinations (often called superpositions) of the fundamental basis
states, corresponding to the states 0 and 1 for a classical bit. Let us indicate the quantum
states by the Dirac notation |·⟩, which stands for the standard notation for normalized
vectors in quantum mechanics. Consequently the computational basis states of each qubit,
or simply the computational basis, are |0⟩ and |1⟩. The state vector for the generic q-th
qubit in a system can be expressed as

|ψq⟩ = δ|0⟩q |0⟩+ δ|1⟩q |1⟩ , (30)

where δ
|0⟩
q ∈ C and δ

|1⟩
q ∈ C are complex numbers that represent the weight of |0⟩ and

|1⟩ states of the superposition, and are called complex probability amplitudes. In principle,
these two complex numbers may suggest that there are four degrees of freedom in each qubit,
but there are also two physical constraints to be considered. First of all, if these complex
numbers are presented in polar form, it is possible to realize that their global phases can be
disregarded, because only the relative phase matters with regards to the expectation value
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of any observable [2]. Secondly, the corresponding probabilities are normalized such that

(δ
|0⟩
q )2 + (δ

|1⟩
q )2 = 1 [2]. Taking into account these two constraints, the state of each qubit

can be described by two angles φq and ζq, and the state vector can be expressed as:

|ψq⟩ = cos (φq/2) |0⟩+ ei ζq sin (φq/2) |1⟩ , (31)

which can be visualized by means of the so-called Bloch sphere (see Fig. 1 and more details
in Appendix C) [2]. Comparing Eq. (30) and Eq. (31) yields

δ|0⟩q = cos(φq/2) and δ|1⟩q = ei ζq sin(φq/2) = ei ζq cos(φq/2− π/2). (32)

Therefore, if one considers n qubits separately, i.e. isolated from each other, they could
be used to store Nsep = 2n real values, which are not many (currently Nsep ≪ N). In
many applications, assuming real probability amplitudes, i.e. ζq = 0, yields to a further
contraction of the representable numbers, namely N real

sep = n.

Figure 1: Bloch sphere representation of the qubit state |ψq⟩. More details about the construction of the
Bloch sphere representation of a single qubit are reported in Appendix C.

A quantum computer involves more than one qubit and therefore we need to familiarize
also with the multi-qubit representation. For the sake of simplicity, let us consider first the
very special case where n qubits are isolated from each other, i.e. the quantum computer is
in a separable quantum state. The fundamental tool for combining formally multiple qubits
isolated from each other into a large single state vector is the tensor product, indicated by the
⊗ symbol. As an example, let us consider a composite system made of two separable qubits
|ψ0⟩ and |ψ1⟩ (hence without entanglement). The state vector of the composite system is
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expressed by |ψsep⟩ and can be computed as

|ψsep⟩ = |ψ0⟩ ⊗ |ψ1⟩ =
(
δ
|0⟩
0 |0⟩+ δ

|1⟩
0 |1⟩

)
⊗
(
δ
|0⟩
1 |0⟩+ δ

|1⟩
1 |1⟩

)
=

= δ
|0⟩
0 δ

|0⟩
1 |0⟩ |0⟩+ δ

|0⟩
0 δ

|1⟩
1 |0⟩ |1⟩+ δ

|1⟩
0 δ

|0⟩
1 |1⟩ |0⟩+ δ

|1⟩
0 δ

|1⟩
1 |1⟩ |1⟩ =

= δ
|0⟩
0 δ

|0⟩
1 |00⟩+ δ

|0⟩
0 δ

|1⟩
1 |01⟩+ δ

|1⟩
0 δ

|0⟩
1 |10⟩+ δ

|1⟩
0 δ

|1⟩
1 |11⟩ . (33)

In the previous derivation, the abbreviated notation for tensor product has been adopted,
namely |β0⟩ ⊗ |β1⟩ = |β0⟩ |β1⟩ = |β0β1⟩ (it is possible to assume that |β0⟩ |β1⟩ = |β0β1⟩ is
always valid because the computational basis is always separable [2]), where βq ∈ {0, 1} and
|β⟩ is one of the computational basis states of the q-th qubit. Let us link Eq. (33) with the
computational mesh. Let us convert the already-mentioned index l, which identifies a mesh
node, to a binary number represented by a string β0β1 such that

l = β0 2
1 + β1 2

0. (34)

Let j be this string, namely j = β0β1, which is useful to identify both the mesh nodes by
j2 = l10 but also the corresponding computational basis states |j⟩, namely

|j⟩ = |β0β1⟩ , (35)

where again it is worth noting that the big-endian convention is adopted [2]. The corre-
sponding complex probability amplitude of the computational basis state |j⟩, in case of a
composite system made of two (separable) qubits, can be expressed as

αsep
j = δ

|β0⟩
0 δ

|β1⟩
1 , (36)

where αsep
j ∈ C in general. Therefore, the state vector of this composite separable system

can be expressed as

|ψsep⟩ = |ψ0⟩ |ψ1⟩ =
11∑
j=00

αsep
j |j⟩ = αsep

00 |00⟩+ αsep
01 |01⟩+ αsep

10 |10⟩+ αsep
11 |11⟩ , (37)

where the same abbreviated notation of the tensor product has been used also for the
state vector of the composite system. A column vector representation is also useful for
understanding how the tensor product works, namely

(
δ
|0⟩
0

δ
|1⟩
0

)
⊗

(
δ
|0⟩
1

δ
|1⟩
1

)
=


δ
|0⟩
0 δ

|0⟩
1

δ
|0⟩
0 δ

|1⟩
1

δ
|1⟩
0 δ

|0⟩
1

δ
|1⟩
0 δ

|1⟩
1

 =


αsep
00

αsep
01

αsep
10

αsep
11

 . (38)

The tensor product between two vectors produces a larger vector, and it should not be con-
fused with the dyadic product in fluid-dynamics, which would lead to a second order tensor
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instead2. It is worth noting that the number of elements in the set {αsep
00 , α

sep
01 , α

sep
10 , α

sep
11 }

grows exponentially with n, but all these terms depend on amplitudes δ
|0⟩
0 , δ

|1⟩
0 , δ

|0⟩
1 and

δ
|1⟩
1 : there are 2n such terms, meaning their number grows linearly with n. Therefore, in
separable states, the representable numbers grow only linearly with n.

The tensor product can be used to represent only separable states, i.e. states without
entanglement. Entanglement is a fundamental property of quantum mechanics where the
quantum state of a system composed of multiple subsystems cannot be described as a simple
product of the states of its individual parts [2]. On the contrary, the system exists in a super-
position of correlated states, such that the measurement of one subsystem instantaneously
affects the state of the other, no matter how far apart they are [2]. An intuitive example
of entanglement for non-experts is reported in Appendix A. In order to understand that
entanglement allows one to represent (many more) new correlated states, which are unreach-
able by Eq. (38), let us consider the following example based on only two qubits. Let us
limit ourselves to only real probability amplitudes, i.e. ζq = 0 for q ∈ {0, 1}. A well-known
entangled state in the computational basis is the Bell state (see also the Appendix B for an
intuitive example), which is a maximally entangled state:

α00

α01

α10

α11

 =


1/
√
2

0
0

1/
√
2

 . (39)

This state cannot be factorized into a product of two individual qubit states, i.e., recalling
that we assumed ζ0 = ζ1 = 0 for simplicity, there are no φ0 and φ1 in Eq. (32) which can
be combined in Eq. (38) to represent the previous entangled (correlated) state. This is

clear because α00 and α11 require non-zero δ
|β0⟩
0 and δ

|β1⟩
1 , but this is contradictory with the

conditions derived by α01 and α10. The Bell state can be included instead, by generalizing
Eq. (37) for the unknown vector state

|ψ⟩ =
11∑
j=00

αj |j⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ , (40)

where now the generic αj ∈ {α00, α01, α10, α11} can be any complex number, only fulfilling the
normalization condition

∑
j α

2
j = 1. The previous generalization is useful to realize that the

number of elements in the set {α00, α01, α10, α11} grows exponentially with n, and these terms
are now independent from each other: Therefore, in generic states, the representable numbers
grow exponentially with n. This exponential increase of the number of computational basis
states can be understood by introducing some correlation among qubits due to entanglement.

2The tensor product ⊗ of two vectors |ψA⟩ and |ψB⟩ creates a new vector |ψA⟩ ⊗ |ψB⟩ in a space with
dimension dA×dB , which is larger than the individual spaces having dimensions dA and dB , respectively. On
the other hand, the dyadic product (sometimes indicated by the same symbol in fluid-dynamics), produces
a matrix (operator), not a vector, and it is indicated here by |ψA⟩ ⟨ψB |.
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Figure 2: Schematic of a composite system of two qubits. (a) Separate states, (b) tensor product of the
two individual states, (c) entangled state, and (d) an example where two marginal probabilities are fixed
(p00, p10) and consistent with the previous case, while varying p11. The measurement probabilities for
each basis state are indicated using colored bars and computed using the projector Pm = |m⟩ ⟨m|, where
|m⟩ ∈ {|0⟩ , |1⟩} for single-qubit states or |m⟩ ∈ {|00⟩ , |01⟩ , |10⟩ , |11⟩} for the two-qubit case.

The fundamental difference between a separable two-qubit system (i.e. a system obtained by
the tensor product of two individual states) and an entangled two-qubit system is depicted
in Fig. 2. This example clearly shows that entanglement enables the exploration of a much
broader space of states compared to what is achievable using only separable states. Hence,
the entanglement is the key to exploit fully the tremendous potential of all computational
basis states. It is the entanglement or – with other words – the presence of correlated
states, which makes the microscopic scenario discussed here substantially different from other
microscopic theories, e.g. the kinetic theory of gases. In the latter theory, the assumption of
molecular chaos (also known as the Stosszahlansatz ), is a key assumption in the derivation
of the Boltzmann equation for dilute gases. The assumption of molecular chaos states that
before a collision occurs, the velocities of two colliding particles are uncorrelated.

After becoming more familiar with the quantum nomenclature, let us come back to a more
realistic quantum computer. A quantum computer with n qubit has typically a much larger
computational basis than the previous example. In the following, the argument above will
be generalized to any number n of qubits. An n qubit system has N = 2n computational
basis states, analogously to a classical system, but, unlike classical bits that exist in one
state at a time, qubits can also exist in superpositions of all these states, according to some
probabilities, which can also be correlated and hence can be freely explored, thanks to the
entanglement. Therefore, a quantum computer can store (and process) an amount of real
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numbers which is at least equal to the number of computational basis states (see next). In
principle, the total number of real degrees of freedom in a general n-qubit quantum state
is 2n+1 − 2, accounting for normalization and the fact that the absolute phase of the state
has no physical significance. If we impose the condition that the amplitudes are real, the
normalization constraint still applies, but the global phase is restricted to ±1, which does
not introduce a continuous degree of freedom. As a result, the number of available degrees
of freedom reduces to 2n− 1. In the following, we will sometimes simplify this expression by
stating that a quantum computer can store (and process) at least 2n real numbers, leveraging
the imaginary parts of certain complex amplitudes to compensate for the missing degree of
freedom. This proves that, in practice, we have significant control over operating with 2n

real numbers by choosing appropriate gate sets or adding auxiliary qubits. Moreover, if we
purposely restrict our gate set to only real-valued operations, the resulting quantum state
will remain in the space of real amplitudes.

Again, for the sake of simplicity, let us first consider the discrete system state vector
representing n separable qubits (without entanglement), namely

|ψsep⟩ = |ψ0⟩ ⊗ |ψ1⟩ ⊗ . . . |ψn−1⟩ = |ψ0⟩ |ψ1⟩ . . . |ψn−1⟩ , (41)

where the last expression is an abbreviated notation for the tensor product among individual
qubits (with big-endian convention [2]). More precisely, the system quantum state involves
associating a complex coefficient αsep

j ∈ C (called an amplitude) with each computational
basis state |j⟩. The amplitude for separable states is actually a composite amplitude which

comes from multiplying the qubit individual amplitudes δ
|βq⟩
q with each other, namely

αsep
j = δ

|β0⟩
0 δ

|β1⟩
1 . . . δ

|βn−1⟩
n−1 =

n−1∏
q=0

δ|βq⟩q , (42)

which generalizes Eq. (36). Using the relations given by Eqs. (32) yields

αsep
j =

n−1∏
q=0

δ|βq⟩q =
n−1∏
q=0

ei ζq βq cos [φq/2− βq (π/2)] , (43)

where we took advantage of the property cos (φq/2− π/2) = sin (φq/2) and βq ∈ {0, 1} as
usual, depending on the considered q-th qubit. Again, let us convert the already-mentioned
index l, which identifies a mesh node, to a binary number represented by a string j =
β0β1 . . . βn−1 by the following formula:

l =
n−1∑
q=0

βq 2
n−1−q, (44)

which ensures that j2 = l10 in accordance with the big-endian convention [2]. The com-
putational basis state corresponding to j is indicated by |j⟩, which generalizes the binary
representation given by Eq. (35), defined as

|j⟩ = |β0β1 . . . βn−1⟩ , (45)
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where |j⟩ ∈ {|0⟩ , |1⟩}⊗n, which means that |j⟩ can be |00 . . . 0⟩, |00 . . . 1⟩, . . . , |11 . . . 1⟩ (the
computational basis is always separable). Clearly there are N = 2n elements in the set
{|0⟩ , |1⟩}⊗n. As done in the previous example, it is possible to exploit the full capability
of the previous set by including also correlated states by entanglement, which are many
more (by far!), in the formula for the state vector of the system in order to ensure a general
validity now, namely

|ψ⟩ = |ψ0 ψ1 . . . ψn−1⟩ =
∑

|j⟩∈{|0⟩,|1⟩}⊗n

αj |j⟩ , (46)

which generalizes Eq. (40). Please note that, in general, |ψ0 ψ1 . . . ψn−1⟩ ≠ |ψ0⟩ |ψ1⟩ . . . |ψn−1⟩,
namely the state vector of the composite system is usually not separable. The probability
pj of finding the system state in the computational basis state |j⟩ is given by pj = α2

j , where∑
j pj =

∑
j α

2
j = 1. In other words, one can say that the discrete vector quantum state |ψ⟩

is normalized, namely ⟨ψ|ψ⟩ = 1 where ⟨·|·⟩ denotes the inner product.
For the sake of simplicity, let us suppose to construct a quantum circuit such that the

output state is characterized by real amplitudes αj = aj ∈ R. In the output of such
quantum circuit, the non-trivial (real) amplitudes aj are 2n real numbers (where typically
2n ≫ n), which can be used to store a huge number of relevant information for the problem
of interest. On the other hand, in a classical computer, real numbers are typically stored
as floating-point approximations rather than exact values (e.g. according to the IEEE 754
floating-point standard). In particular, n classical bits can store a fixed-precision binary
representation of a real number, which is equivalent to store one coded state among all
available computational states (which are 2n). If one wants to express the same concept by
using a classical probability distribution, it would be like the classical probability distribution
is equal to one only for the coded state and zero otherwise (Dirac delta distribution). Hence
the difference between a quantum computer and a classical computer is that we can load 2n

real numbers in the corresponding amplitudes of a quantum circuit thanks to superposition
(non-trivial probability distribution of states), while we can code only one discrete state
at the time in a classical computer among all possible states (Dirac delta distribution of
states). The (potentially) tremendous advantage is clear (2n ≫ ⌊nclassic/64⌋) and it can be
represented in a non-rigorous way by the following expression (which is meaningful at the
current stage of development of the quantum technology)

Nsep ≪ N = 2n. (47)

Next, we need to understand how a quantum circuit can be used to perform the desired
calculations. There are five main steps:

1. Identification of the quantum state (Normalization);

2. Design of the quantum system (Observable);

3. Selection of the quantum parametrized trial solution (Quantum ansatz);

4. Minimization of the loss function (Optimization);

5. Extraction of useful results (De-normalization).
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3.2. Normalization

The first step is to identify the quantum state where to store the relevant information by
normalizing Eq. (7). Because a discrete quantum state |ψ⟩ is normalized, namely ⟨ψ|ψ⟩ = 1,
let us divide Eq. (7) by a factor such that it becomes possible to identify a quantum state
which depends on the temperature profile. In particular, let us choose this factor as follows:

1

(T⃗+ · T⃗+)(T⃗ · T⃗ )
Ĉ T⃗+ =

1

(T⃗+ · T⃗+)(T⃗ · T⃗ )
T⃗ , (48)

where T⃗ · T⃗ denotes the inner product (i.e., T⃗ † · T⃗ , and since T⃗ is real-valued, T⃗ † reduces to

the transpose of T⃗ ); similarly for T⃗+ · T⃗+. Let us define the quantum state |b⟩ for mapping
the initial temperature profile, namely

|b⟩ = 1√
T⃗ · T⃗

T⃗ , (49)

where, by construction, ⟨b|b⟩ = 1. Before proceeding, let us be sure to appreciate the true
meaning of the previous relation. Essentially it implies that each node zl of the computa-
tional mesh is associated with a quantum computational basis state |j⟩ (where |j⟩ ∈ {0, 1}⊗n
involves the binary representation of integer l). Similarly let us proceed with the quantum
state |x⟩ for mapping the updated temperature profile at the new time step, namely

|x⟩ = 1√
T⃗+ · T⃗+

T⃗+, (50)

where the same normalization holds. Introducing the definitions given by Eq. (49) and Eq.
(50) into Eq. (48) yields √

T⃗+ · T⃗+

T⃗ · T⃗
Ĉ |x⟩ = |b⟩ . (51)

It is also possible to define a normalization factor f given by

f =

√
T⃗+ · T⃗+

T⃗ · T⃗
, (52)

and to derive the linear system of target equations as

Â |x⟩ = |b⟩ , (53)

where Â = f Ĉ. The problem is that the normalization factor is not known at the beginning
of the numerical procedure because it depends on the solution T⃗+, which derives from solving
the linear system of equations. This means that Â can be used to discuss the theoretical
setup, but the practical numerical procedure must involve Ĉ, because the latter depends
only on the adopted FD formula.
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3.3. Observable

The second step is to derive a quantum system, which provides information relevant
to solve the target problem. Let us follow the strategy proposed in Ref. [5] to construct
a Hamiltonian, which admits the quantum state |x⟩ as the ground state. Although heat
conduction is intrinsically a dissipative process and thus not Hamiltonian in the strict sense,
we introduce a ‘Hamiltonian’ here to refer to the matrix arising from the finite-difference
discretization, which structurally resembles a Hamiltonian operator. This formalism facil-
itates the following analysis (see section 1.1 for more details). Applying the methodology
described in Ref. [5] to Eq. (53) yields the following Hamiltonian

Ĥ ′ = Â† (I − |b⟩ ⟨b|) Â, (54)

where |·⟩ ⟨·| denotes the outer product and Â† is the conjugate transpose of Â in general,
while, in this case, Â† = ÂT , because Â is real. In this case, Â is also symmetric and therefore
ÂT = Â. As pointed out before, let us formulate the quantum algorithm in terms of the
practical operator Ĉ which does not involve the normalization factor. Since ÂT = Â = f Ĉ,
the previous Hamiltonian can be computed as Ĥ ′ = f 2 Ĥ where

Ĥ ≡ Ô = ĈT (I − |b⟩ ⟨b|) Ĉ. (55)

In the previous formula, we implicitly remind that the Hamiltonian is just a special case of
quantum observable (where energy is the actual observed quantity): therefore, it makes sense
to use instead the symbol Ô from now on for making the procedure as universal as possible.
Let us decompose this operator as Ô = ĈT M̂ Ĉ, where M̂ = I−|b⟩ ⟨b| is a projector operator.
It is possible to prove that M̂ is a projector operator because M̂2 = I−2 |b⟩ ⟨b|+ |b⟩ ⟨b| = M̂ .
It projects onto the orthogonal complement of |b⟩. That is, it removes the component of
a vector along |b⟩, leaving only the part orthogonal to |b⟩. First of all, let us analyze the
eigenvalues of M̂ , by calling λk the k-th eigenvalue and |ϕk⟩ the corresponding eigenstate,
namely M̂ |ϕk⟩ = λk |ϕk⟩. The k-th eigenvalue can be computed as

λk = ⟨ϕk|M̂ |ϕk⟩ = 1− ⟨ϕk|b⟩2 . (56)

Recalling the Cauchy–Schwarz inequality, namely

⟨ϕk|b⟩ ≤
√
⟨ϕk|ϕk⟩

√
⟨b|b⟩ = 1, (57)

it is possible to find out that
λk = 1− ⟨ϕk|b⟩2 ≥ 0. (58)

This means that all eigenvalues of M̂ are larger than or equal to zero, i.e. the core operator
M̂ is positive semi-definite. Using the same orthonormal basis, it is possible to express M̂
by spectral decomposition

M̂ =
N−1∑
k=0

λk |ϕk⟩ ⟨ϕk| . (59)
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Now, coming back to the main observable Ô, let us consider the expectation value of the
observable Ô with regards to the generic state vector |ψ⟩, namely

⟨ψ| Ô |ψ⟩ = ⟨ψ| ĈT

(
N−1∑
k=0

λk |ϕk⟩ ⟨ϕk|

)
Ĉ |ψ⟩ =

N−1∑
k=0

λk ⟨ϕk|Ĉ|ψ⟩
2
, (60)

where we used ĈT = Ĉ. Using the result given by Eq. (58) yields

⟨ψ| Ô |ψ⟩ ≥ 0, (61)

which proves that the main observable Ô is also positive semi-definite, i.e. all eigenvalues
of Ô are positive or equal to zero. Clearly |x⟩ is the eigenvector of Ô corresponding to the
zero eigenvalue, namely

Ô |x⟩ = Ô Â−1 |b⟩ = f−1 ĈT (I − |b⟩ ⟨b|) |b⟩ = 0, (62)

which proves that |x⟩ is the ground state of the operator Ô, as expected by design. The
linear algebra task given by Eq. (53) is converted to the task of finding the ground state of
the Hamiltonian Ĥ ≡ Ô [5].

3.4. Quantum circuit ansatz

The third step is the quantum circuit ansatz, i.e. a parameterized trial solution which
should be able to approximate the ground state |x⟩. The key point is that, in order to prove
the quantum supremacy, there are too many elements in the vector |x⟩ to work on them
directly by a classical computer. Let us recall that VQE is a hybrid algorithm, where the
optimization is supposed to be done by a classical computer [2]. Hence let us introduce

a vector of parameters θ⃗, which are fewer such that they can be handled by a classical
computer. The quantum circuit ansatz enforces a parameterized state |x(θ⃗ )⟩ which makes
possible to map these parameters on a generic quantum state. The parameterized state is
the output of a unitary transformation (quantum gate), namely

|x(θ⃗ )⟩ = U(θ⃗ ) |0⟩⊗n , (63)

where |0⟩⊗n stands for |0⟩⊗ |0⟩⊗ . . . |0⟩ = |0⟩ |0⟩ . . . |0⟩ = |00 . . . 0⟩ (the computational basis

is always separable) and θ⃗ is a vector of tunable parameters. The parameters θ⃗ are typically
generic ‘rotations’ of qubits which are optimized during the minimization step of the VQE
algorithm (see next section 3.5). In order to preserve the quantum advantage, the number
of parameters to optimize over in the ansatz circuit must be much less than the size of the
computational basis of the quantum states, because the former is handled by a classical
optimizer/minimizer, while the latter exploits the full capability of the quantum computer.
With other words, the number of parameters must grow as a polynomial in the number n of
qubits, while the size of the full vector |x⟩ is exponential in the number of qubits [4]. It is
not important which polynomial describes the growth of the number of parameters, because
any polynomial cannot compete with the growth of the exponential function 2n for large n.
In the following sections, for example, we will see 8n parameters in the ansatz depicted in
Fig. (3) and 4n parameters in the simplified ansatz depicted in Fig. (6).
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3.5. Optimization

The fourth step is the actual minimization of the loss function. A loss function quantifies
the difference (“loss”) between a quantum state predicted by the ansatz for a given input
and the ground state. Taking into account Eq. (61) and the ansatz given by Eq. (63), the
loss function can be defined as

L(θ⃗ ) = ⟨x(θ⃗ )| Ô |x(θ⃗ )⟩ ≥ 0. (64)

The optimal set of parameters can be formally defined by the argument of the minimization
problem with regards to the loss function, namely

θ⃗min = argmin
θ⃗

L(θ⃗ ) = argmin
θ⃗

⟨x(θ⃗ )| Ô |x(θ⃗ )⟩ . (65)

Let us define |xmin⟩ as
|xmin⟩ = |x(θ⃗min )⟩ . (66)

Because of numerical errors, |xmin⟩ is different from the theoretical ground state, i.e. |xmin⟩ ≠
|x⟩, but it is usually close enough.

3.6. De-normalization

The final step is to de-normalize the numerical quantum approximation |xmin⟩ for coming
back to the original quantity of interest, i.e. the temperature. Let us start with the initial
temperature profile. Let us define the auxiliary quantity

θ =
√
T⃗ · T⃗ , (67)

which can be used to express Eq. (49) as T⃗ = θ |b⟩. Let us compute this auxiliary quantity
θ by the spatial average of the initial temperature profile, namely

θ =

∑
l Tl∑

j ⟨j|b⟩
. (68)

where
∑

j ⟨j|b⟩ is the sum of all real amplitudes in |b⟩. Please remember that |j⟩ ∈ {0, 1}⊗n
involves the binary representation of integer l. Similarly, recalling Eq. (50), let us define

θ+ =
√
T⃗+ · T⃗+. (69)

which can now be computed by using the quantum numerical approximation |xmin⟩. Taking
advantage of the energy conservation, which implies∑

l

T+
l =

∑
l

Tl, (70)

the quantity θ+ can be computed by the following formula

θ+ =

∑
l Tl∑

j ⟨j|xmin⟩
. (71)
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It is worth to note that, in case of accurate minimization, all terms in the summation
at the denominator in Eq. (71) are positive because they correspond to the nodal values
of the normalized new temperatures. Clearly f = θ+/θ. The quantity θ+ is essential to
de-normalize the quantum solution and to come back to the updated temperature profile,
namely

T⃗+ = θ+ |xmin⟩ . (72)

So far we presented the straightforward implementation of the VQE approach which
demonstrates a fundamental possibility to solve linear algebra problems, and in particular
the discretized conduction equation on a quantum processor. However, it has one essential
disadvantage: this algorithm requires to decompose the observable Ô in terms of a sequence
of Pauli matrices (see next section for details). Usually the number of Pauli matrices in
this decomposition is exponential in the number of qubits and hence it spoils the potential
quantum speedup [6]. More sophisticated variational methods have been already proposed
in the literature, which are more promising from a practical point of view [6]. One possibility
consists in evaluating the loss function by an adaption of a fundamental quantum circuit, the
so-called Hadamard test [7]. An even more effective implementation consists in combining
the Hadamard test with the quantum Fourier transform [6]. A more advanced approach
for near-term algorithms, namely algorithms suitable for near-term quantum hardware, is
represented by the so-called ansatz tree [8], which has been already applied to the discretized
conduction equation [6]. These techniques will be explored and compared in a future work.

3.7. Practical details of implementation

In this section, we need to complete the algorithm presented in previous section by
adding more details about the actual implementation of the algorithm in a quantum com-
puter. Even though these details are general, we will focus on Qiskit [4] by IBM as an
example open-source software development kit. Qiskit [4] is an open-source framework for
quantum computing that allows users to design, simulate, and run quantum programs on
real hardware. It provides an intuitive way to build quantum circuits, optimize them for
execution, and simulate their behavior before running on actual quantum processors. Qiskit
also includes tools for error mitigation and circuit optimization, making it more practical
for real-world use.

3.7.1. Decomposition in Pauli matrices

In the presented algorithm, the loss function to be minimized L(θ⃗) is defined by the
expectation value of the observable Ô defined by Eq. (55). To measure the observable Ô
given by Eq. (55) on a quantum computer by Qiskit [4], one must represent it as a sum of
tensor products of Pauli matrices, that is

Ĥ ≡ Ô =

Np−1∑
p=0

γp P̂p, (73)

where Np is the number of terms in the Pauli decomposition of the Hamiltonian, γp ∈
R because Ô = Ô† is Hermitian (actually it is real and symmetric in this case), P̂p ∈
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{I,X, Y, Z}⊗n, and the Pauli matrices are

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (74)

We will clarify soon the physical meaning of this decomposition in terms of Pauli matrices,
but it is important to first understand the tensor product between matrices. As an example,
let us consider again a composite system made of two qubits. In this case, the generic p-th
element of the decomposition looks like

P̂p = σp0 ⊗ σp1 =

[
σp011 σ

p1 σp012 σ
p1

σp021 σ
p1 σp022 σ

p1

]
=

=

σ
p0
11

(
σp111 σp112
σp121 σp122

)
σp012

(
σp111 σp112
σp121 σp122

)
σp021

(
σp111 σp112
σp121 σp122

)
σp022

(
σp111 σp112
σp121 σp122

)
 =

=


σp011 σ

p1
11 σp011 σ

p1
12 σp012 σ

p1
11 σp012 σ

p1
12

σp011 σ
p1
21 σp011 σ

p1
22 σp012 σ

p1
21 σp012 σ

p1
22

σp021 σ
p1
11 σp021 σ

p1
12 σp022 σ

p1
11 σp022 σ

p1
12

σp021 σ
p1
21 σp021 σ

p1
22 σp022 σ

p1
21 σp022 σ

p1
22

 , (75)

where σp0 and σp1 are matrices which can be I, X, Y or Z and they refer to the first and
the second qubit, respectively. After becoming more familiar with this nomenclature, let us
come back to the case with n qubits, which can become pretty complicated, namely

P̂p = σp0 ⊗ σp1 ⊗ . . . σp(n−1), (76)

where the detailed expressions are omitted for the sake of simplicity. Fortunately, the tensor
product among matrices has a fundamental property [2], which only applies to separable
states but can help in understanding this decomposition. Let us suppose to apply the p-th
element of the decomposition P̂p to a separable vector state |ψsep⟩ = |ψ0⟩⊗ |ψ1⟩⊗ . . . |ψn−1⟩,
which yields

P̂p |ψsep⟩ =
[
σp0 ⊗ σp1 ⊗ . . . σp(n−1)

]
(|ψ0⟩ ⊗ |ψ1⟩ ⊗ . . . |ψn−1⟩) =

= σp0 |ψ0⟩ ⊗ σp1 |ψ1⟩ ⊗ . . . σp(n−1) |ψn−1⟩ . (77)

The previous formula means that the result of P̂p |ψsep⟩ is simply the tensor product of the
individual calculation σpq |ψq⟩ for all the qubits. This implies

⟨ψsep| P̂p |ψsep⟩ =
n−1∏
q=0

⟨ψq|σpq |ψq⟩ . (78)

and consequently

⟨ψsep| Ô |ψsep⟩ =
Np−1∑
p=0

γp

n−1∏
q=0

⟨ψq|σpq |ψq⟩ , (79)
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which means that the expectation value of the observable Ô with regards to separable states
can be computed by a sequence of measurements on one qubit at a time (but it is crucial to
change the measurement basis for the q-th qubit corresponding the σpq matrix). In case of
non separable states, i.e. in case of entanglement, the previous simplification does not hold.

Even though the previous formula is a special case, it allows one to appreciate that there
is a computational problem at this point, namely Np grows pretty fast with n (exponentially,
see next). Let us do an example. In case of a system with 3 qubits, the decomposition in
Pauli matrices given by Eq. (73) is the following

Ô = γ0III + γ1IIX + γ2IXI + γ3IXX + γ4IXZ + γ5IY Y +

γ6IZI + γ7IZX + γ8IZZ + γ9XII + γ10XIX + γ11XXI +

γ12XXX + γ13XXZ + γ14XY Y + γ15XZI + γ16XZX + γ17XZZ +

γ18Y IY + γ19Y XY + γ20Y Y I + γ21Y Y X + γ22Y Y Z + γ23Y ZY +

γ24ZII + γ25ZIX + γ26ZIZ + γ27ZXI + γ28ZXX + γ29ZXZ +

γ30ZY Y + γ31ZZI + γ32ZZX + γ33ZZZ, (80)

where, for example, III means I ⊗ I ⊗ I and similarly for all remaining terms. In this
example, for n = 3 the Pauli decomposition requires Np = 34. For the sake of comparison,
for n = 4 the Pauli decomposition requires Np = 120 ∼ exp(kp n), where kp is a proper
constant. Therefore, the present application appears to be a case where the number of
Pauli products in the Hamiltonian decomposition grows exponentially with the number of
qubits, as suggested in [6]. However, the reference does not explicitly analyze this scaling,
and as noted, leveraging the distribution of Pauli string weights can potentially reduce
the complexity. While a brute-force or naive approach would indeed be impractical, the
literature suggests alternative methods – such as truncation, grouping of Pauli strings, and
other techniques – that might be applicable in this context. It remains unclear whether
these approaches could be effectively employed in this specific case. More details about the
Pauli decomposition can be found in Ref. [9].

3.7.2. Efficient circuit ansatz

In the presented algorithm, the loss function to be minimized L(θ⃗) is defined with regards

to a parameterized trial solution |x(θ⃗ )⟩, which is called the ansatz. The ansatz given by Eq.

(63) is a parameterized trial solution |x(θ⃗ )⟩ which should be able to approximate the ground
state |x⟩. The parametrized solution is the output of a unitary transformation (quantum

gate) U(θ⃗ ), which depends on a vector θ⃗ of Nθ tunable parameters. Naively one would like

to have a procedure for correlating the parameters in θ⃗ with the real amplitudes in |x(θ⃗ )⟩
by means of some analytical formulas. This approach is usually called real data loading or
better encoding, and some algorithms have been proposed in literature [10]. For optimization
problems – and for VQE in particular – real data loading/encoding is not strictly necessary
and it will be omitted here in favor of a more efficient approach, namely an approach with
less tunable parameters (see also Appendix D).

In Qiskit [4], let us consider a unitary transformation U(θ⃗ ) which consists of two in-
gredients: (i) four layers of single-qubit operations, (ii) spanned by controlled NOT gates
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Figure 3: Efficient ansatz (3 qubit, 24 parameters = four layers with six parameters each or, equivalently,
eight parameters per qubit). For clarity, horizontal lines represent quantum wires which correspond to qubits
in the circuit, red squares are the RY gates (see Eq. (81)), blue squares are the RZ gates (see Eq. (82)),
blue dots represent control points in controlled gates, ⊕ symbol is used for a controlled-X (CNOT ) gate.
The latter gate explicitly guarantees the desired entanglement.

(also called controlled-X gates) for ensuring some degree of entanglement [2]. This is a
heuristic pattern that can be used to prepare trial states for variational quantum algorithms
or classification circuit for machine learning [4]. The single-qubit operations consist of the
sequential application RYRZ (in this case, there is no tensor product implied because both
apply to the same qubit) of a RY gate and a RZ gate, defined as

RY (θY ) = exp

(
−i θY

2
Y

)
=

(
cos (θY /2) − sin (θY /2)
sin (θY /2) cos (θY /2)

)
, (81)

and

RZ(θZ) = exp

(
−i θZ

2
Z

)
=

(
exp (−i θZ/2) 0

0 exp (i θZ/2)

)
. (82)

The previous definitions can be thought as derived from the same generic formula

exp (−i θσ σ) = cos θσ I − i sin θσ σ, (83)

where θσ is a parameter and σ is a matrix which can be the Pauli matrix Y or Z. The
previous generic formula derives from the property of Pauli matrices (after multiplication
by i =

√
−1 to make them anti-Hermitian) to generate transformations in the sense of Lie

algebras [2]. This formula is analogous for Pauli matrices to the Euler’s formula of complex
analysis.

This ansatz is called “EfficientSU2” circuit in Qiskit [4] and it is plotted in Fig. (3) for
a system with 3 qubits. For a system with n = 3 qubits, Nθ = 24 because there are four
layers with six parameters each (two gates RY and RZ for each qubit) or, equivalently, eight
parameters per qubit. For the sake of comparison, for n = 4 the number of parameters in
this ansatz becomes Nθ = 8n = 32. It is essential that the number of ansatz parameters to
optimize over is linear as in this case (or polynomial at worst) in the number of qubits, in
order to ensure a potential quantum supremacy (because Nθ ∼ kθ n≪ 2n = N , where kθ is
a proper constant).
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3.7.3. Minimization of the loss function

VQE is a hybrid algorithm that combines (i) classical operations for the converging
iterations and (ii) loss function evaluations by quantum operations, to find the ground state
of the target quantum system, which is designed in our case to update the one-dimensional
temperature profile consistently with the heat conduction equation.

For the converging iterations by classical operations, one can use the “minimize” function
of the “scipy.optimize” library in the SciPy platform [3]. It is recommended to focus on
Jacobian-free methods: for example, the “COBYLA” solver and “L-BFGS-B” solver, which
produce similar performance according to our preliminary experiments. The goal is to
minimize the number of evaluations of loss functions, which requires limiting the tolerance
for termination in the range 1–10× 10−3.

3.8. Simulated results

3.8.1. Simulated results by Qiskit

For quantum computers in the NISQ era, the discussed algorithm for real applications
is still very challenging, mainly because of qubit decoherence. For this reason, in order
to perform some preliminary experiments, let us use the “BaseEstimatorV2” simulator
available in Qiskit [4], which estimates expectation values for provided quantum circuit and
observable combinations. An example implementation of the VQE in Qiskit is reported in
Appendix F.

Let us compute the outcome of applying the time-progress operator Ĉ−1 given by Eq. (8)
to an initial temperature profile. With other words, let us perform one time step to update
the temperature profile of our target problem. In Fig. (4), the results for one time-step
update of the temperature profile according to the heat conduction equation are reported
in case of n = 3 qubits (N = 8), BaseEstimatorV2 quantum simulator and COBYLA
classical minimizer with tolerance for termination 1 × 10−3). This minimization required
839 evaluations of the loss function, which are still too many for most existing quantum
computers to compete with classical computers. Similarly, in Fig. (5), the results for the
same problem in case of n = 4 qubits (N = 16) are reported (the quantum simulator and the
classical minimizer are the same as before). In this second case, even though the results look
acceptable, we performed 106 evaluations of the loss function, hitting the upper maximum
limit which we set in advance.

3.8.2. Simulated results by Qrisp

While the physics side of quantum computing makes significant progress, the support
for high-level quantum programming abstractions is still in its infancy compared to modern
classical languages and frameworks [11]. An interesting example is provided by Qrisp, which
is a high-level programming language developed by Fraunhofer for creating and compiling
quantum algorithms [11]. Its structured programming model enables scalable development
and maintenance [11]. An example implementation of the VQE in Qrisp is reported in
Appendix F.

For simplicity, the Qrisp example code employs the simplified ansatz shown in Fig. 6,
which consists solely of RY and CNOT gates. Among the relevant parameters for the
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Figure 4: One time-step update of the temperature profile according to heat conduction equation by quantum
computing (3 qubits, BaseEstimatorV2 quantum simulator, COBYLA classical minimizer with tolerance for
termination 1 × 10−3). The blue line is the initial temperature profile (with mean equal to 1), the orange
dashed line is the new temperature profile at time ∆t, computed by finite-difference method. The blue dots
are the mesh node temperatures computed by the quantum simulator.

vqe.run method, used to compute the system’s energy in the Qrisp example code (see Fig.
Appendix F), the most important is ‘precision’, as it determines the number of shots during
execution on real hardware. In quantum computing, ‘shots’ refer to the number of times a
quantum circuit is executed to collect measurement statistics. Since quantum measurements
are probabilistic, multiple shots are required to estimate expectation values with sufficient
accuracy. Hence precision refers to how accurately the Hamiltonian is evaluated. The
number of shots the real quantum hardware performs per iteration scales quadratically with
the inverse precision. Therefore it is important to estimate properly the required precision
in order to assess the feasibility of running a VQE algorithm on real quantum hardware.

In Fig. 7 the impact of parameter ‘precision’ on simulated results is investigated by 30
repetitions of the VQE algorithm for collecting some relevant statistics (mean and standard
deviation) of the performed measurements. In particular, ‘precision’: 0.025 and ‘precision’:
0.001 are considered. In the first case, the uncertainty is larger than the temperature
differences due to the heat conduction time step, making the simulation practically useless.
This proves that actual precision, or equivalently the maximum number of shots, are limiting
factors for successfully implementing VQE algorithms on real quantum hardware.

3.9. VQE based on diagonalizing the measurement

As already mentioned, the key for modeling an irreversible phenomenon by an ideal
quantum computer is to properly design the measurement. Unfortunately, the naive VQE
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Figure 5: One time-step update of the temperature profile according to heat conduction equation by quantum
computing (4 qubits, BaseEstimatorV2 quantum simulator, COBYLA classical minimizer with tolerance for
termination 1 × 10−3). The blue line is the initial temperature profile (with mean equal to 1), the orange
dashed line is the new temperature profile at time ∆t, computed by finite-difference method. The blue dots
are the mesh node temperatures computed by the quantum simulator.

Figure 6: Simplified ansatz (3 qubit, 12 parameters = four layers with three parameters each or, equivalently,
four parameters per qubit). For clarity, horizontal lines represent quantum wires which correspond to qubits
in the circuit, red squares are the RY gates (see Eq. (81)), blue dots represent control points in controlled
gates, ⊕ symbol is used for a controlled-X (CNOT ) gate.

approach discussed in the previous section presents a challenge: in the general case, the
observable Ô may require an expansion involving an exponential number of Pauli matrices
[6]. See the expansion given by Eq. (80) for n = 3 and the discussion afterwards. For this
reason, we discuss here a better approach based on diagonalizing the measurement [6]. The
key idea is to simplify the observable by transferring relevant information about the problem
in the preparation of the state by a proper circuit. In order to do so, we need to introduce
first the Quantum Fourier Transform, which is a unitary transformation by construction.
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(a) Parameter ‘precision’: 0.025 (b) Parameter ‘precision’: 0.001

Figure 7: Simulated results obtained by Qrisp example code for implementing the VQE (see Appendix F).
In both cases, 30 repetitions are considered for statistics (mean and standard deviation), but with ‘precision’:
0.025 and ‘precision’: 0.001 of the performed measurements, respectively. In the first case, the uncertainty
is larger than the temperature differences due to the heat conduction time step.

3.9.1. Quantum Fourier Transform (QFT)

Before deriving the QFT, let us generalize our nomenclature about the normalization
needed to pass from a temperature vector and the corresponding quantum state. A generic
quantum state |ψ⟩ is related to the corresponding temperature vector by a proper scaling
factor. For example, according to Eq. (49) and Eq. (67), the following scaling holds

|b⟩ = (1/θ) T⃗ , which means that state |b⟩ is obtained by normalizing T⃗ by the scaling

factor θ. Similarly, |x⟩ = (1/θ+) T⃗+, where it is important to highlight that θ+ ̸= θ. More
specifically, the scaling factor N/θ2 changes during the simulation. In general, let us define

the linear mapping as |ψ⟩ = (1/θψ) T⃗
ψ. This generalized mapping will be used in the rest

of this section.
The Fourier transformation is defined in this document in such a way so as to realize a

unitary transformation by construction. Consequently ÛFT is a unitary matrix, which can
be automatically implemented by means of a unitary quantum circuit [2]. For the sake of
clarity, let us use in the following ÛQFT , where ÛQFT ≡ ÛFT . Because the FT is a linear

transformation, |ψ̃⟩ = ÛQFT |ψ⟩ = (1/θψ)
⃗̃Tψ holds too. Consequently,

|ψ̃⟩ = ÛQFT |ψ⟩ , (84)

where, for example, ψ can be |b⟩ or |x⟩. The quantum states |ψ⟩ and |ψ̃⟩ are defined as

|ψ⟩ =
∑

|j⟩∈{0,1}⊗n

ψj |j⟩ , (85)

|ψ̃⟩ =
∑

|j⟩∈{0,1}⊗n

ψ̃j |j⟩ , (86)
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where the computational basis is the same, as it happens also for the classical case given by
Eq. (10) and Eq. (11). Taking into account Eq. (12), the quantum FT of the generic l′-th
amplitude of the transformed state is given by

b̃j′ =
1√
N

∑
|j⟩∈{0,1}⊗n

bj ω
j′j
N . (87)

The problem arises with Eq. (14) because the wavenumber spectrum is not linear with
regards to the transformed field. This means that the wavenumber spectrum of a quantum
state can not be a quantum state. Therefore, let us define the vector p⃗ as the wavenumber
spectrum, namely

p⃗ψ = Diag(|ψ̃⟩ ⟨ψ̃|), (88)

where Diag(·) is the diagonal extraction operator and |ψ̃⟩ ⟨ψ̃| is the density matrix, which
– in case of pure states – represents the classical probability distribution over measurement
outcomes in the standard basis. It is possible to prove that the wavenumber spectrum
defined by Eq. (88) is automatically normalized, namely∑

|j′⟩∈{0,1}⊗n

pψj′ = ⟨ψ̃|ψ̃⟩ = ⟨ψ̃| Û †
QFT ÛQFT |ψ̃⟩ = ⟨ψ|ψ⟩ = 1. (89)

By comparing Eq. (88) with Eq. (14), it is easy to prove that p⃗ψ = |ψ̃⟩ ⊙ |ψ̃∗⟩ = (N/θ2ψ) p⃗
c,

where the superscript ∗ means the complex conjugate. The scaling factor N/θ2 changes
during the simulation. For example, for the temperature profile reported in Appendix E,
N/θ2 = 8/9 initially, but it tends to unity when the solution approaches the steady-state
temperature profile.

3.9.2. Hadamard test approach

Before proceeding with the methodology proposed in Ref. [6], let us first clarify how the
loss function given by Eq. (64) is actually computed by a quantum algorithm. First of all,
the observable Ô is represented as a sum of Np tensor products of Pauli matrices, as reported

in Eq. (73). Secondly, Eq. (63) means that the parametrized solution |x(θ⃗ )⟩ is actually

computed by means of a unitary transformation U(θ⃗ ), coded by the selected ansatz. Let us
highlight these implementation features in the definition of the loss function given by Eq.
(64), namely

L(θ⃗ ) = ⟨x(θ⃗ )| Ô |x(θ⃗ )⟩ = M
(
Ô, U(θ⃗ )

)
, (90)

where M(Ô, U) is the measurement protocol for estimating the expectation value of the
observable Ô by means of the circuit U . Eq. (90) means that the naive implementation,
discussed in the previous section, consists in computing the loss function by a direct mea-
surement protocol. Unfortunately, the latter requires large Np, i.e. too many tensor products

to represent Ô.
On the other hand, the key idea here is to use the Quantum Fourier Transform (QFT)

to simplify the observable Ô by encoding the relevant information about the problem into
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(a) Circuit, which can be described as ÛQFT U Ub, for preparing the quantum state |x̃⟩ (with n qubits), which is used by the
measurement protocol MD̂2 given by Eq. (95).

(b) Circuit, which can be described as UHI , for preparing the quantum state |ξ⟩ (with n + 1 qubits), which is used by the
measurement protocol MD̂,Re given by Eq. (98).

(c) Circuit, which can be described as UHS , for preparing the quantum state |ξ′⟩ (with n + 1 qubits), which is used by the
measurement protocol MD̂, Im given by Eq. (99).

Figure 8: Quantum circuits used by the measurement protocols MD̂2 , MD̂,Re and MD̂, Im, needed for

computing the loss function according to Eq. (100). Note that unitary transformations are graphically
represented from left to right, but they apply in the reverse order in the computational formulas [2].
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some state preparations via appropriate quantum circuits. This approach avoids the issue
of exponential growth in the number of Pauli matrices required for the decomposition of
the observable. Let us diagonalize the loss function by recalling the definition of observable
given by Eq. (55) and by using the definition of QFT given by Eq. (84), namely,

L(θ⃗ ) = ⟨x(θ⃗ )| ĈT (I − |b⟩ ⟨b|) Ĉ |x(θ⃗ )⟩
= ⟨x| ĈT Ĉ |x⟩ − ⟨x| ĈT |b⟩ ⟨b| Ĉ |x⟩

= ⟨x̃| D̂2 |x̃⟩ − ⟨x| ĈT |b⟩
(
⟨x| ĈT |b⟩

)∗
= ⟨x̃| D̂2 |x̃⟩ −

∣∣∣⟨x̃| D̂ |b̃⟩
∣∣∣2 (91)

where the dependence of |x(θ⃗ )⟩ on θ⃗ was dropped for the sake of simplicity and D̂ =
ÛQFT Ĉ Û

†
QFT , which means that QFT diagonalizes the conduction operator Ĉ, as already

discussed in the previous sections. In deriving the last formula, the following property
was used: ÛQFT Ĉ

T Û †
QFT = D̂T = D̂. Moreover, it is worth to recall that ⟨b| Ĉ |x⟩ is a

complex number and that ⟨b| Ĉ |x⟩ = (⟨x| ĈT |b⟩)∗, where (·)∗ is the complex conjugate.
The QFT clearly simplifies the observables which are now D̂ and D̂2, but it introduces
the challenge of efficiently preparing non-trivial states necessary for measuring the terms
involved in computing the loss function [6].

Let us identify the measurement protocols for estimating both terms in Eq. (91). Let us
start with the first term ⟨x̃| D̂2 |x̃⟩. Since D̂2 has real matrix elements and is Hermitian (as
it arises from a symmetry), its expectation value is necessarily real [2]. We need to use the
selected ansatz in a way which is different from what was done before. We use it to pass
from state |b⟩ to state |x⟩ for some parameter vector θ⃗, namely

|x(θ⃗ )⟩ = U(θ⃗ ) |b⟩ . (92)

The previous formula may appear incompatible with Eq. (63). Actually there is no contra-
diction between Eq. (63) and Eq. (92) because the ansatz is just a sort-of numerical spline,

which can realize different transformations by different parameter vectors θ⃗. Consequently,
another transformation must be used to prepare the state |b⟩, namely |b⟩ = Ub |0⟩⊗n, which
leads to

|x(θ⃗ )⟩ = U(θ⃗ ) |b⟩ = U(θ⃗ )Ub |0⟩⊗n . (93)

Finally
|x̃⟩ = |x̃(θ⃗ )⟩ = ÛQFT U(θ⃗ ) |b⟩ = ÛQFT U(θ⃗ )Ub |0⟩⊗n . (94)

Consequently the measurement protocol for estimating the first term in Eq. (91) becomes

⟨x̃| D̂2 |x̃⟩ = M
(
D̂2, ÛQFT U Ub

)
= MD̂2 , (95)

which is depicted in Fig. (8a).
The remaining term ⟨x̃| D̂ |b̃⟩ in Eq. (91) is more difficult to compute because it is

asymmetric with regards to the states which must collapse on the observable D̂. In this
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case, even though D̂ is Hermitian, ⟨x̃| D̂ |b̃⟩ is not necessarily real. Therefore, we can use two
circuits for computing its real and imaginary parts. Following the procedure suggested in Ref.
[6], an additional ancilla qubit is added, and some modifications of the standard Hadamard
test [2] are properly designed. In particular, the modified Hadamard tests, depicted in Fig.
8b and in Fig. 8c, are used to prepare two states |ξ⟩ and |ξ′⟩, respectively. These quantum
states are defined with regards to an enlarged system made of n+1 qubits, where the ancilla
qubit is added to the original n qubits. The quantum circuits preparing these states act as
unitary gates, namely

|ξ⟩ = |ξ(θ⃗ )⟩ = UHI(θ⃗ ) |0⟩⊗ (n+1) , (96)

|ξ′⟩ = |ξ′(θ⃗ )⟩ = UHS(θ⃗ ) |0⟩⊗ (n+1) . (97)

These quantum states are used in the following measurement protocols (which are proved
in the following):

Re
(
⟨x̃| D̂ |b̃⟩

)
= ⟨ξ|Z ⊗ D̂ |ξ⟩ = M

(
Z ⊗ D̂, UHI

)
= MD̂,Re, (98)

Im
(
⟨x̃| D̂ |b̃⟩

)
= ⟨ξ′|Z ⊗ D̂ |ξ′⟩ = M

(
Z ⊗ D̂, UHS

)
= MD̂, Im, (99)

where Z is one of the Pauli matrices reported in Eq. (74). Before proving the above
measurement protocols, it is worth to realize that they can be used to compute the loss
function given by Eq. (91), namely

L(θ⃗ ) = ⟨x̃| D̂2 |x̃⟩ −
∣∣∣⟨x̃| D̂ |b̃⟩

∣∣∣2
= ⟨x̃| D̂2 |x̃⟩ −

[
Re
(
⟨x̃| D̂ |b̃⟩

)]2
−
[
Im
(
⟨x̃| D̂ |b̃⟩

)]2
= MD̂2 −M2

D̂,Re
−M2

D̂, Im
. (100)

This is the novel methodology proposed in Ref. [6], which reduces significantly the number
of Pauli matrices required for the decomposition of the observable, and hence substitutes
the naive measurement protocol reported in Eq. (90). The key idea is to simplify the
observables, at the price of making the circuits for generating the measurement states more
complex.

The novel methodology given by Eq. (100) is based essentially on the measurement
protocols given by Eq. (98) and Eq. (99). In order to prove them, one needs to derive
explicitly the states |ξ⟩ and |ξ′⟩. Let us start with |ξ⟩, which is prepared by the circuit
reported in Fig. 8b. Recalling that the Hadamard gate [2] is given by

H =
1√
2

(
1 1
1 −1

)
. (101)

Hence, H |0⟩ = (|0⟩ + |1⟩)/
√
2 and H |1⟩ = (|0⟩ − |1⟩)/

√
2 because, by convention, |0⟩ =

(1, 0)T and |1⟩ = (0, 1)T . Analyzing the circuit depicted in Fig. 8b yields

|ξ⟩ |1st barrier =
1√
2
(|0⟩+ |1⟩)⊗ |b̃⟩ . (102)
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In this case, the controlled U gate is only applied to the target if the controlled qubit(s) is
in the |1⟩ state, namely

U c =


1 0 0 0
0 1 0 0
0 0 U11 U12

0 0 U21 U22

 . (103)

Consequently, according to equation 92, the state at the second barrier in this case becomes:

|ξ⟩ |2nd barrier =
1√
2

(
|0⟩ ⊗ |b̃⟩+ |1⟩ ⊗ |x̃⟩

)
. (104)

Finally, applying the Hadamard gate again to the previous state yields:

|ξ⟩ |3rd barrier = |ξ⟩ =
1√
2

[
1√
2
(|0⟩+ |1⟩)⊗ |b̃⟩+ 1√

2
(|0⟩ − |1⟩)⊗ |x̃⟩

]
=

=
1

2
|0⟩ ⊗ (|b̃⟩+ |x̃⟩) + 1

2
|1⟩ ⊗ (|b̃⟩ − |x̃⟩). (105)

This is a particularly interesting quantum state: (i) because it represents a superposition
between the vector of known terms of the linear system |b̃⟩ and the solution vector |x̃⟩; (ii)
furthermore, the presence of the ancilla qubit allows us to distinguish between two linear
combinations, |b̃⟩ + |x̃⟩ and |b̃⟩ − |x̃⟩, thereby broadening the range of computations that
can be performed with this state. The state exhibits quantum entanglement between the
ancilla qubit and the register containing |b̃⟩ and |x̃⟩, meaning that measurement of the
ancilla directly affects the state of the second register. Having simultaneous access to both
|b̃⟩ + |x̃⟩ and |b̃⟩ − |x̃⟩ enables the use of quantum interference to extract global features
of the solution, such as inner products or similarity tests. Recalling that Z |0⟩ = |0⟩ and
Z |1⟩ = − |1⟩, applying the observable Z ⊗ D̂ to |ξ⟩ yields

(Z ⊗ D̂) |ξ⟩ =
1

2
Z |0⟩ ⊗ D̂(|b̃⟩+ |x̃⟩) + 1

2
Z |1⟩ ⊗ D̂(|b̃⟩ − |x̃⟩)

=
1

2
|0⟩ ⊗ D̂(|b̃⟩+ |x̃⟩)− 1

2
|1⟩ ⊗ D̂(|b̃⟩ − |x̃⟩). (106)

Next, we want to compute ⟨ξ| (Z ⊗ D̂) |ξ⟩. The complex conjugate state ⟨ξ| is given by

⟨ξ| = 1

2
⟨0| ⊗ (⟨b̃|+ ⟨x̃|) + 1

2
⟨1| ⊗ (⟨b̃| − ⟨x̃|). (107)

Consequently the expectation value ⟨ξ| (Z ⊗ D̂) |ξ⟩ is given by

⟨ξ| (Z ⊗ D̂) |ξ⟩ = 1

4

[
⟨0| ⊗ (⟨b̃|+ ⟨x̃|)

] [
|0⟩ ⊗ D̂(|b̃⟩+ |x̃⟩)

]
−1

4

[
⟨0| ⊗ (⟨b̃|+ ⟨x̃|)

] [
|1⟩ ⊗ D̂(|b̃⟩ − |x̃⟩)

]
+
1

4

[
⟨1| ⊗ (⟨b̃| − ⟨x̃|)

] [
|0⟩ ⊗ D̂(|b̃⟩+ |x̃⟩)

]
−1

4

[
⟨1| ⊗ (⟨b̃| − ⟨x̃|)

] [
|1⟩ ⊗ D̂(|b̃⟩ − |x̃⟩)

]
. (108)
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The second and the third term in the previous expression are null, because ⟨0|1⟩ = 0 and
⟨1|0⟩ = 0. Taking into account that ⟨0|0⟩ = 1 and ⟨1|1⟩ = 1 yields

⟨ξ| (Z ⊗ D̂) |ξ⟩ = 1

4

(
⟨b̃| D̂ |b̃⟩+ ⟨b̃| D̂ |x̃⟩+ ⟨x̃| D̂ |b̃⟩+ ⟨x̃| D̂ |x̃⟩

)
−1

4

(
⟨b̃| D̂ |b̃⟩ − ⟨b̃| D̂ |x̃⟩ − ⟨x̃| D̂ |b̃⟩+ ⟨x̃| D̂ |x̃⟩

)
=

1

2

(
⟨b̃| D̂ |x̃⟩+ ⟨x̃| D̂ |b̃⟩

)
. (109)

Taking into account that

(⟨x̃| D̂ |b̃⟩)∗ = ⟨b̃| D̂† |x̃⟩ = ⟨b̃| D̂ |x̃⟩ , (110)

it is possible to derive the following property

⟨b̃| D̂ |x̃⟩+ ⟨x̃| D̂ |b̃⟩ = 2Re
(
⟨x̃| D̂ |b̃⟩

)
. (111)

Consequently, using Eq. (111) into Eq. (109) yields

⟨ξ| (Z ⊗ D̂) |ξ⟩ = Re
(
⟨x̃| D̂ |b̃⟩

)
= MD̂,Re, (112)

which is the desired result for the measurement protocol MD̂,Re.
On the other hand, let us proceed with |ξ′⟩, which is prepared by the circuit reported in

Fig. 8c. Recalling that the phase gate [2] is given by

S =

(
1 0
0 i

)
. (113)

Hence, S |0⟩ = |0⟩ and S |1⟩ = i |1⟩. Analyzing the circuit depicted in Fig. 8c yields

|ξ′⟩ |1st barrier =
1√
2
(|0⟩+ i |1⟩)⊗ |b̃⟩ , (114)

|ξ′⟩ |2nd barrier =
1√
2

(
|0⟩ ⊗ |b̃⟩+ i |1⟩ ⊗ |x̃⟩

)
, (115)

|ξ′⟩ |3rd barrier = |ξ′⟩ =
1√
2

[
1√
2
(|0⟩+ |1⟩)⊗ |b̃⟩+ i√

2
(|0⟩ − |1⟩)⊗ |x̃⟩

]
=

=
1

2
|0⟩ ⊗ (|b̃⟩+ i |x̃⟩) + 1

2
|1⟩ ⊗ (|b̃⟩ − i |x̃⟩). (116)

The same considerations about the unique properties of the state |ξ⟩ hold as well for the
state |ξ′⟩. Proceeding in the same way discussed above, the expectation value ⟨ξ′|Z⊗ D̂ |ξ′⟩
is given by

⟨ξ′|Z ⊗ D̂ |ξ′⟩ = i

2

(
⟨b̃| D̂ |x̃⟩ − ⟨x̃| D̂ |b̃⟩

)
. (117)
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Taking into account again Eq. (110), it is possible to derive the following property

⟨b̃| D̂ |x̃⟩ − ⟨x̃| D̂ |b̃⟩ =
(
⟨x̃| D̂ |b̃⟩

)∗
− ⟨x̃| D̂ |b̃⟩ = −2i Im

(
⟨x̃| D̂ |b̃⟩

)
. (118)

Consequently, using Eq. (118) into Eq. (117) yields

⟨ξ′|Z ⊗ D̂ |ξ′⟩ = Im
(
⟨x̃| D̂ |b̃⟩

)
= MD̂, Im, (119)

which is again the desired result for the measurement protocol MD̂, Im.

4. Conclusions

At the current stage of technological development, predicting the potential impact of
quantum computing on Thermal Science remains extremely challenging, as it depends on
future advancements. As a paradigmatic case, we focused on solving the heat conduction
equation, with the starting point being the development of algorithms that leverage quantum
computing most effectively for this application.

In these notes, we began by analyzing the Variational Quantum Eigensolver (VQE) al-
gorithm, as it establishes a crucial connection between solving linear systems of equations
– common in Thermal Science – and finding the ground state of quantum systems, a fun-
damental problem that provides deeper insight into quantum mechanics. While VQE faces
practical challenges for implementation on real quantum computers, the complexity of de-
composing the target observable into Pauli matrices depends on the specific problem. For
instance, in molecular Hamiltonian functions, the number of Pauli strings typically scales
as ∼ n4, which is still computationally demanding but not exponential. Despite these chal-
lenges, with appropriate techniques, VQE may still be applicable [12].

More advanced algorithms will also need to be analyzed. Promising alternatives include
the Quantum Approximate Optimization Algorithm (QAOA) for combinatorial optimiza-
tion tasks, the Quantum Linear System Algorithm (QLSA) (such as HHL) for efficiently
solving linear equations, and hybrid quantum-classical methods that combine classical pre-
conditioning techniques with quantum solvers to mitigate computational bottlenecks.
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Appendix A. Two-athlete strategy

Let us imagine that two athletes must both participate in a preliminary qualifying tour-
nament to advance to the final stage of a sports competition. Unfortunately, the first athlete
has not had enough time to train properly and therefore has a 20% chance of qualifying,
while the second athlete has prepared adequately and thus has a 80% chance of achieving
the same result. Let us indicate by |1⟩ the qualified state for the final stage and by |0⟩ the
unqualified state, after the measurement certified by the preliminary tournament. In this
regard, the state of the two athletes, before the preliminary tournament, can be expressed
by the superposition of unqualified state |0⟩ and qualified state |1⟩, namely

|ψ0⟩ =
√
0.8 |0⟩+

√
0.2 |1⟩ , (A.1)

|ψ1⟩ =
√
0.2 |0⟩+

√
0.8 |1⟩ . (A.2)

If the two athletes compete in the qualifying tournament independently, the expected out-
come will be

|ψ0⟩ ⊗ |ψ1⟩ =
√
0.16 |00⟩+

√
0.64 |01⟩+

√
0.04 |10⟩+

√
0.16 |11⟩ . (A.3)

The previous formula means that there is a 64% probability that the under-prepared athlete
does not qualify while the well-trained athlete qualifies, which is the most probable outcome
of the tournament. The opposite outcome changing both predictions at the same time
is quite unlikely (4% probability). Mixed outcomes, where one event is aligned with the
most likely expectation and the other one changing the expected outcome, have the same
(intermediate) 16% probability. This outcome can be obtained also by sampling properly a
purposely-designed quantum circuit. Let us assign a qubit for each athlete, i.e. q0 and q1
respectively. For each athlete, let us design a proper gate representing the training, which
realizes a single-qubit rotation about the Y -axis and ensures the expected performance
probability according to Eq. (31). The obtained quantum circuit and the corresponding
simulated results are reported in Fig. (A.9). It is possible to prove that the previous
predictions are correct by recalling the general formula for combining the probabilities of
uncorrelated events by tensor product, namely

|ψ0⟩ ⊗ |ψ1⟩ =
√
p
|0⟩
0 p

|0⟩
1 |00⟩+

√
p
|0⟩
0 p

|1⟩
1 |01⟩+

√
p
|1⟩
0 p

|0⟩
1 |10⟩+

√
p
|1⟩
0 p

|1⟩
1 |11⟩ . (A.4)

Putting aside the sports for a while, the previous formula is consistent with the kinetic
theory of gases and, in particular, with the assumption of molecular chaos in deriving the
Boltzmann equation (also known as the Stosszahlansatz ), which states that before a collision
occurs, the velocities of two colliding particles are uncorrelated.

Coming back to the example, let us suppose now that the better-prepared athlete decides
to help the less-prepared one by sharing advice on how to tackle the various challenges of the
qualification tournament and perhaps provides some insights about their opponents. This
time, the chances of success for the less-prepared athlete increase significantly. However,
there is also a price to pay: in some cases, the better-prepared athlete may provide mis-
leading advice, leading to failures that would not have occurred otherwise. Now the state
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(a) Quantum circuit (b) Simulated results

Figure A.9: Uncorrelated athletes/qubits q0 and q1. For each athlete, a proper gate represents the training,
which realizes a single-qubit rotation about the Y -axis (RY gate) and ensures the expected performance
probability according to Eq. (31). The dashed vertical line is used to demarcate logical gates from measure-
ment.

representing the tournament outcome for the two athletes becomes correlated (i.e. entan-
gled). Because of entanglement, when the well-trained athlete qualifies (i.e. the second qubit
is equal to |·1⟩) then the athlete is convincing enough to flip the other athlete’s performance
outcome (from 0 to 1 but also vice versa). This means that the probabilities of the outcome
|01⟩ and |11⟩ are swapped, namely

|ψ0ψ1⟩ =
√
0.16 |00⟩+

√
0.16 |01⟩+

√
0.04 |10⟩+

√
0.64 |11⟩ . (A.5)

Now the probability that both athletes qualify is increased to 64%, meaning that this strategy
is anyway advantageous. In this second case, the quantum circuit must be updated by adding
a controlled NOT gate (also called controlled-X gate or CNOT gate): as already pointed
out, the CNOT gate implies that, whenever q1 equals one, the athlete is persuasive enough
to reverse the other’s performance outcome (switching between 0 and 1 but also vice versa).
The quantum circuit and the corresponding simulated results in this second case are reported
in Fig. (A.10). The key point is that, in presence of correlation – also called entanglement
–, the outcome state is not separable, which means that it cannot be expressed as the tensor
product of two independent states, namely |ψ0ψ1⟩ ≠ |ψ?

0⟩ ⊗ |ψ?
1⟩, where |ψ?

0⟩ and |ψ?
1⟩ are

hypothetical states which do not exist. In order to prove that such separated states do
not exist, let us compare Eq. (A.5) with the tensor product definition given by Eq. (A.4),
namely

p
|0⟩?
0 p

|0⟩?
1 = 0.16, (A.6)

p
|0⟩?
0 p

|1⟩?
1 = 0.16, (A.7)

p
|1⟩?
0 p

|0⟩?
1 = 0.04, (A.8)

p
|1⟩?
0 p

|1⟩?
1 = 0.64. (A.9)
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(a) Circuit (b) Results

Figure A.10: Correlated athletes/qubits due to entanglement. In this second case, the quantum circuit was
updated by adding a controlled NOT gate (also called controlled-X gate or CNOT gate): every time that
q1 is equal to one, the athlete is convincing enough to flip the second athlete’s performance outcome (from
0 to 1 but also vice versa).

Let us combine Eq. (A.6) and Eq. (A.7), which yields p
|0⟩?
1 = p

|1⟩?
1 , where p

|0⟩?
0 was simplified.

The last relation can be used in Eq. (A.8) to yield

p
|1⟩?
0 p

|1⟩?
1 = 0.04, (A.10)

p
|1⟩?
0 p

|1⟩?
1 = 0.64, (A.11)

which are two relations clearly incompatible with each other. Hence, the state given by
Eq. (A.5) is not separable because the two athletes are entangled. This metaphor of the
two-athlete strategy aligns well with the numerical example shown in Fig. 2, which can
therefore also be interpreted as a visual representation of the current example.

Appendix B. Prisoner’s dilemma

In the classical prisoner’s dilemma, two players (Alice and Bob) must independently
decide whether to Cooperate (C) or Defect (D). If both cooperate, they receive a moderate
penalty (e.g., 1 year in prison each). If one defects while the other cooperates, the defector
goes free (0 years) while the cooperator gets the maximum penalty (3 years in prison). If
both defect, they receive a higher penalty (typically 2 years in prison each). In classical
game theory, defection is the dominant strategy, leading to a situation where both players
receive a worse outcome than if they had cooperated.

Now, suppose Alice and Bob behave as an entangled Bell state [2]. This state introduces
non-classical correlations between their choices, namely

|ψ⟩ = 1√
2
(|CC⟩+ |DD⟩) . (B.1)
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In this state, their decisions are no longer independent: if Alice is measured and goes for
cooperation, Bob’s measurement in the same basis will necessarily yield cooperation as well,
and the same holds for defection. By leveraging quantum operations, Alice and Bob can
reach a new equilibrium where cooperation becomes as likely as defection, leading to a better
outcome than in the classical case. Quantum entanglement thus enhances cooperation and
offers a possible resolution to the prisoner’s dilemma beyond classical strategies.

Appendix C. Hilbert space versus Bloch sphere

Here, we aim to intuitively explain the construction of the Bloch sphere representation
of a single qubit, and its relationship to the Hilbert space representation. As previously
discussed, a single qubit state vector can be expressed using Eq. (30):

|ψq⟩ = δ|0⟩q |0⟩+ δ|1⟩q |1⟩ ,

where δ
|0⟩
q , δ

|1⟩
q ∈ C are complex numbers. These coefficients define a state in a two-

dimensional Hilbert space over the complex numbers, which can be thought of as having
four real parameters; thus, even in this simple case, it is difficult to visualize the state.
Fortunately, we can overcome this limitation by using the polar (Euler) representation of

complex numbers and applying the normalization condition, |δ|0⟩q |2 + |δ|1⟩q |2 = 1. We first

express the complex amplitudes as δ
|0⟩
q = Aeiα and δ

|1⟩
q = Beiβ. Substituting into Eq. (30),

we obtain:
|ψq⟩ = Aeiα |0⟩+Beiβ |1⟩ . (C.1)

The normalization condition constrains the amplitudes to lie on the unit circle in real two-
dimensional space: A2 +B2 = 1.

Therefore, we can parameterize the amplitudes using a single polar angle θ:

|ψq⟩ = cos θ eiα |0⟩+ sin θ eiβ |1⟩ .

Since an overall (global) phase factor has no physical effect, we can factor out eiα and ignore
it, defining a relative phase ζ = β − α. We then obtain:

|ψq⟩ = eiα
(
cos θ |0⟩+ sin θ eiζ |1⟩

)
,

where the term eiα can be safely omitted, since it represents a phase shift, and does not affect
measurement outcomes [2], yielding the simplified and physically equivalent expression:

|ψq⟩ = cos θ |0⟩+ sin θ eiζ |1⟩ . (C.2)

Comparing Eq. (C.2) with Eq. (31) in the main text yields θ = φq/2 and ζ = ζq, which will
be clearer at the end of this appendix and is the main point of this derivation. Now, using
Euler’s formula eiζ = cos ζ + i sin ζ, we can rewrite the qubit state:

|ψq⟩ = cos θ |0⟩+ sin θ cos ζ |1⟩+ i sin θ sin ζ |1⟩ ,
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and comparing to the spherical coordinate vector r⃗ = (sin θ cos ζ, sin θ sin ζ, cos θ)T . We
recognize that it is possible to visualize the state |ψq⟩ in a tridimensional Hilbert space with
the bases |1⟩ = (1, 0, 0)T , i |1⟩ = (0, i, 0)T (the generic axis of the Hilbert space may be
complex, but the inner product must be still non-commutative3), |0⟩ = (0, 0, 1)T , as shown
in Fig. C.11(a). Using the full sphere in Hilbert space has the problem that multiple states

-

a) b) c)

Figure C.11: Intuitive construction of the Bloch sphere. (a) The qubit vector state |ψq⟩ (and the reflected
state |ψ∗

q ⟩) represented in Hilbert space. (b) The conceptual stretching of the upper hemisphere onto a
sphere (and the equator of the upper hemisphere in a point). (c) The final representation of |ψq⟩ as a vector
state on the Bloch sphere.

can result in the same measurement outcomes. For example, consider the state |ψq⟩ and the
reflected state through the equatorial plane |ψ∗

q⟩ = cos(−θ) |0⟩+ sin(−θ) eiφ |1⟩, depicted in
Fig. C.11(a), which yield the same measurement probabilities:

p0 = ⟨ψq|P0|ψq⟩ = ⟨ψ∗
q |P0|ψ∗

q⟩ = cos2 θ,

p1 = ⟨ψq|P1|ψq⟩ = ⟨ψ∗
q |P1|ψ∗

q⟩ = sin2 θ,

where the projectors operators of the measurement are defined as P0 = |0⟩ ⟨0| and P1 =
|1⟩ ⟨1|. Thus, we see that |ψq⟩ and |ψ∗

q⟩ are physically indistinguishable by measurement.
As a result, only the upper hemisphere of the sphere in the Hilbert space is needed to
uniquely describe a qubit state, which corresponds to restricting the angle θ to the interval
θ ∈ [0, π/2].

Furthermore, all the states that lie along the equator (θ = π/2 in the Hilbert space) rep-
resent the same measurement outcome (i.e., for θ = π/2 we have |ψ′

q⟩ = cos ζ |1⟩+sin ζ i |1⟩,
so the measurement probability is p1 = ⟨ψ′

q|P1|ψ′
q⟩ = cos2 ζ + sin2 ζ = 1). Therefore, we can

conceptually imagine “pulling” this circumference downward until it collapses into a single

3In a two-dimensional complex space, the inner product is non-commutative because it is conjugate
symmetric, meaning ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗ (complex conjugate), so swapping the vectors changes the result unless
the inner product is real. For example, if |a⟩ = |1⟩ and |b⟩ = i |1⟩, then ⟨a|b⟩ = i ̸= ⟨b|a⟩ = −i, therefore
⟨a|b⟩ = ⟨b|a⟩∗.
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point. This transformation simplifies the visualization and results in the familiar Bloch
sphere representation, as illustrated in Fig. C.11(b) and Fig. C.11(c). In this representation,
the polar angle θ from the Hilbert space mapping is effectively doubled on the Bloch sphere.
To maintain consistency between the two representations, we can introduce the Bloch polar
angle φ = 2θ ⇔ θ = φ/2, with φ ∈ [0, π], as used in Eq. (31).

It is important to note that this is an illustrative non-rigorous explanation of the Bloch
sphere construction. Mathematically, the Bloch sphere corresponds to the complex projec-
tive line of the two-dimensional Hilbert space, constructed using a stereographic projection
of the qubit state onto a plane and topologically represented as the Riemann sphere.

Appendix D. Real data loading/encoding

A fundamental aspect of quantum computing is the ability to efficiently load real-world
data into a quantum system and extract results back to classical computing. Naively one
would like to have a procedure for correlating the parameters in θ⃗ with the real amplitudes
in |x(θ⃗ )⟩ by means of some analytical formulas. This approach is usually called real data
loading or better encoding, and some algorithms have been proposed in literature, e.g. a
divide-and-conquer algorithm for quantum state preparation [10]. Even though, for opti-
mization problems (including VQE), real data loading/encoding is not strictly necessary, it
is a good way to understand how a quantum computer works and hence it will be discussed
here.

Loading real-world data into a quantum system requires a quantum state preparation.
Many algorithms to create arbitrary quantum states require quantum circuits with depth
O(N) to load an N -dimensional vector [10]. In the context of quantum circuits, depth
refers to the number of sequential (time-ordered) layers of quantum gates that must be
applied to execute an algorithm. It measures how many steps a quantum circuit takes
to process information. Some algorithms have been proposed in the literature based on a
divide-and-conquer strategy to load a N -dimensional vector using a quantum circuit with
poly-logarithmic depth [10]. The problem is that these algorithms usually require a large
number of parameters to compute and therefore are less suitable for variational problems as
VQE.

The divide-and-conquer paradigm is used in efficient algorithms for sorting, computing
the discrete Fourier transform, and others [10]. The main idea is to divide a problem into
subproblems of the same class and combine the solutions of the subproblems, in a recursive
way, to obtain the solution of the original problem [10]. In particular, one of the standard
methods for loading information in a quantum device is based on using controlled rotations
[10]. These controlled rotations can be designed by means of a proper binary tree data
structure for the data to be loaded and consequently, by means of Eq. (31), for the expected
rotations. In the case of n = 3 qubits, the resulting quantum circuit, which consists solely
of rotations about the Y -axis (RY gates), is shown in Fig. D.12. As an example of its
application, let us suppose to load the following real data

Ll =
1

N
+

1

2N
sin

(
2π

N
l +

2π

N

)
, l = 0, 1, . . . , N − 1, (D.1)
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Figure D.12: Quantum circuit for loading real data in a quantum system state |x⟩ based on a
divide-and-conquer algorithm proposed in Ref. [10]. Note that the proposed circuit uses only rotations
about the Y -axis (RY gates), which are designed by means of a proper binary tree data structure [10]. For
clarity, horizontal lines represent quantum wires which correspond to qubits in the circuit, red squares are
the RY gates (see Eq. (81)), blue squares are the X gates (NOT gates), red dots represent control points
in controlled gates.

Figure D.13: Example of real data loading / encoding (simulated). The red bars represent the real data to
be loaded. The blue bar represents the actual loaded data by a divide-and-conquer algorithm proposed in
Ref. [10]. These results are based on a quantum simulator provided in the Qiskit package.
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where the elements Ll are designed such that
∑

l Ll = 1. The last condition makes possible
to load the previous data as (quasi) probabilities of a quantum state, namely

|xL⟩ =
∑

|j⟩∈{0,1}⊗n

√
Lj |j⟩ . (D.2)

Please note that this is different from what is done in the main text (see section 3.2),

where the elements of vector T⃗ are loaded as amplitudes of a quantum state |xT ⟩ =∑
j(Tj/

√
T⃗ · T⃗ ) |j⟩, e.g. see Eq. (50). In quantum computing, real data can be loaded

into quantum states either as probabilities or amplitudes, each with distinct implications.
Probability encoding represents data as a quantum probability distribution, where measure-
ment outcomes follow predefined likelihoods, making it useful for probabilistic modeling and
quantum sampling. In contrast, amplitude encoding directly maps data values into quantum
state amplitudes, enabling powerful applications in quantum machine learning and linear al-
gebra but requiring more complex state reconstruction. While probability encoding is more
intuitive and measurement-friendly, amplitude encoding offers greater expressive power for
quantum algorithms. Coming back to the original data loading/encoding problem, in case
of N = 8, the values Ll can be encoded into a three-qubit quantum state |L⟩ using the
proposed circuit by means of Nd&c

θ = 7 parameters. The quasi-probabilities obtained from
simulating this circuit, based on 100, 000 measurements of system replicas, are presented in
Fig. D.13, demonstrating the circuit’s effectiveness in accurately encoding the target real
data.

In the divide-and-conquer approach, the good point is that the parameters θ⃗ have a clear
physical interpretation, thanks to the binary tree data structure, and they can be analytically
computed to recover the target data to be loaded. The problem is that the number of
parameters in this ansatz grows as Nd&c

θ = 2n − 1, which is as large as the number of real
data to be loaded (recall that ⟨x|x⟩ = 1). For comparison, the efficient ansatz discussed
in section 3.7.2, called “EfficientSU2” circuit in Qiskit [4], requires instead a number of
parameters which grows only linearly with the number of qubits, namely Nθ = 8n. It
is clear that, in case of a large number of qubits, the divide-and-conquer approach is less
efficient than “EfficientSU2” – and therefore impractical – for variational problems because
Nd&c
θ ≫ Nθ.
Clearly, the problem of data loading and encoding is quite general and extends far beyond

variational applications. In particular, all software development kits have efficient routines
for performing this task. For example, Qiskit [4] has a state preparation routine based on
the decomposition of arbitrary isometries into a sequence of single-qubit and controlled-not
(CNOT ) gates [13]. This approach is tested here for loading the data given by Eq. (D.1)
in case of N = 8 (3 qubits) and N = 16 (4 qubits) on a real hardware. In particular, let
us use the IQM Garnet machine developed by IQM, a Finnish-German quantum computer
manufacturer. The experimental results (based on 20, 000 shots) of the state preparation
algorithm proposed in Ref. [13] on IQM Garnet are reported in Fig. D.14. These results
should be considered indicative, as real hardware in the NISQ era is influenced by environ-
mental conditions, causing actual outcomes to vary slightly from run to run.
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(a) 3 qubits (real hardware) (b) 4 qubits (real hardware)

Figure D.14: Example of real data loading / encoding (real hardware). The red bars represent the real data
to be loaded. The blue bar represents the actual loaded data by a divide-and-conquer algorithm proposed in
Ref. [10]. These results (based on 20, 000 shots) are obtained by IQM Garnet machine developed by IQM,
a Finnish-German quantum computer manufacturer.

Appendix E. How discrete FT works

In this Appendix, let us try to clarify the meaning of the discrete Fourier transform
with complex output. First of all, let us introduce the Euler’s formula which establishes the
fundamental relationship between the trigonometric functions and the complex exponential
function, namely

eiφ = cosφ+ i sinφ, (E.1)

where i =
√
−1 is the imaginary unit and φ is a generic angle between the line connecting

the unitary complex number and the real axis on the complex plane in Fig. E.15(a). Next,
we need to understand the meaning of ωN = ei 2π/N given by Eq. (13). Dividing the full
angle 2π into N parts, ωN is obtained by performing, in the complex plane, a rotation
corresponding to a slice of 2π/N . In polar form, ωN identifies one of the possible complex
roots of unity.

The l-th power of ωN , i.e. ω
l
N , corresponds to a rotation equal to l slices, i.e. 2π l/N .

Also the power ωlN is a complex root of unity. This property allows to define a discrete
geometrical series, namely 1, ω1

N , ω
2
N , . . . , ω

N−1
N , which is represented as a series of vectors in

Fig. E.15(b). The linear combination of these vectors implies

N−1∑
l=0

ωlN = 0. (E.2)

The intuitive meaning is that the net effect of a sum over all discrete angular vectors (with
norm one), which are angularly equally spaced is equal to zero, because they are obtained by
adding progressively the slice ωN until covering the full angle 2π. It is possible to generalize
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a) b)

Figure E.15: Euler’s formula for representing complex roots of unity in the polar form on complex plane.

the previous result by a generic parameter m as

N−1∑
l=0

ωlmN =
N−1∑
l=0

e2π i lm/N =

{
N, m = 0

0, m ̸= 0
. (E.3)

In order to understand the role of the parameter m and hence the meaning of the previous
result, let us consider the examples reported in Fig. E.16. In top of those cases where the
net effect is zero, one has also to add the trivial cases where the exponent is equal to zero and
therefore all terms in the summation become equal to unity. Some powers of ωN appear also
in the definition of operator ÛFT given by Eq. (16). The sum over all the components of the
generic m-th row of the operator ÛFT is given by Eq. (E.3) multiplied by the normalization
factor 1/

√
N . Eq. (E.3) is also an immediate consequence of Vieta’s formulas.

The property given by Eq. (E.3) is particularly useful in the discrete FT to select the

harmonic components of a generic field (in our case, a temperature field T⃗ ). Let us suppose

that the temperature field T⃗ is defined by a proper orthonormal basis e⃗0, e⃗1, e⃗2, . . . e⃗N−1, as
reported in Eq. (10), where Tl is the nodal value for the l-th mesh node. Let us suppose to
decompose each nodal value Tl in harmonic components T̃k where k goes from 0 to N−1, as
prescribed by the inverse transform given by Eq. (15). These components altogether makes

the transformed field, which is a column vector of complex numbers ⃗̃T defined with regards
to the same orthonormal basis by Eq. (11). As it will be clear by the following example,

Eq. (E.3) allows one to project the vector T⃗ on those components of the transformed
vector with wavenumbers k such that m = f(k) = 0. As an example, let us consider a
normalized (dimensionless) temperature profile, where the l-th generic nodal value is given
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1 2 8 1 2 3 1 2 3

1 2 3 1 2 81 2 3

a) m=0

d) m=3

b) m=1 c) m=2

e) m=4 f) m=8

Figure E.16: Summation of geometric series of complex roots of unity, i.e.
∑N−1

l=0 ei 2π lm/N . In case of
N = 8, the sub-figures report two examples where the summation is non-zero, i.e. m = 0 and m = 8, as
well as three examples where the summation is zero, i.e. m = 1, m = 2 and m = 3.

by the following expression

Tl = 1 +
1

2
sin

[
2π

N
(l + 1)

]
. (E.4)

Again from the Euler’s formula, namely ei θ = cos θ + i sin (θ), it is possible to express the
sine function in the previous example as sin (θ) = (ei θ−e−i θ)/(2 i), which yields equivalently

Tl = 1 +
1

4 i

(
−ω−1−l

N + ω1+l
N

)
. (E.5)

Let us apply the discrete FT given by Eq. (12), namely

T̃k =
1√
N

N−1∑
l=0

[
ωklN − ω−1

N

4 i
ω
l(k−1)
N +

ωN
4 i
ω
l(k+1)
N

]
. (E.6)

Because the previous result is invariant under cyclic shifts, as evident from Fig. E.15(b),
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substituting the equivalence ω
k(l+1)
N = ω

k(l+1−N)
N in the previous expression yields

T̃k =
1√
N

N−1∑
l=0

[
ωklN − ω−1

N

4 i
ω
l(k−1)
N +

ωN
4 i
ω
l(k+1−N)
N

]
. (E.7)

Using the property for geometric series given by Eq. (E.3) and combining the results by the
orthonormal basis used in Eq. (11) yields

⃗̃T =
√
N

(
e⃗0 −

ω−1
N

4 i
e⃗1 +

ωN
4 i

e⃗N−1

)
. (E.8)

Substituting the definition of ωN yields

⃗̃T =
√
N e⃗0 +

(√
2N

8
+ i

√
2N

8

)
e⃗1 +

(√
2N

8
− i

√
2N

8

)
e⃗N−1. (E.9)

From the application point of view, let us introduce the shift operator S, which is the
circulant matrix defined as

Ŝ : e⃗l → e⃗l+N/2 mod N , (E.10)

where mod is the modulo operation, which returns the remainder of a division. By means
of the shifted operator, it is possible to define the result in the standard (shifted) form,
namely

⃗̃Ts = Ŝ ⃗̃T =

(√
2N

8
− i

√
2N

8

)
e⃗N/2−1 +

√
N e⃗N/2 +

(√
2N

8
+ i

√
2N

8

)
e⃗N/2+1. (E.11)

It is also useful to compute the wavenumber spectrum, which describes how the variance of
the temperature field is distributed over different harmonic components, by means of Eq.
(14). The (shifted) wavenumber spectrum p⃗ cs is defined as

p⃗ cs =
1

N
⃗̃Ts ⊙ ⃗̃T ∗

s =
1

16
e⃗N/2−1 + e⃗N/2 +

1

16
e⃗N/2+1. (E.12)

where ⊙ represents the Hadamard (element-wise) product and the superscript ∗ means the
complex conjugate.

It may be interesting to compute the (shifted) wavenumber spectrum p⃗ cs by the quantum

spectrum p⃗s. Taking into account Eq. (49) and Eq. (67) yields |b⟩ = (1/θ) T⃗ , which means

that state |b⟩ is obtained by normalizing T⃗ by the scaling factor θ. Because the FT is a linear

transformation, then |b̃⟩ = (1/θ) ⃗̃T and consequently ⃗̃T = θ |b̃⟩. Using the latter relation
into Eq. (E.12) yields

p⃗ cs =
1

N
⃗̃Ts ⊙ ⃗̃T ∗

s =
θ2

N
⃗̃bs ⊙ ⃗̃b∗s =

θ2

N
p⃗s, (E.13)

where shifted ⃗̃bs = Ŝ ⃗̃b, shifted p⃗s = Ŝ p⃗ and p⃗ is the quantum spectrum given by Eq. (88).
For our example temperature profile, given by Eq. (E.4), θ2/N = 9/8 holds, which makes
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(a) 3 qubits (real hardware) (b) 4 qubits (real hardware)

Figure E.17: Wavenumber spectrum, given by Eq. (88), computed by QFT routine provided in Qiskit
[4]. These results (based on 20, 000 shots) are obtained by IQM Garnet machine developed by IQM, a
Finnish-German quantum computer manufacturer.

possible to compute p⃗ cs by p⃗s. In particular, for the example considered in this Appendix,
p⃗s is computed in case of N = 8 (3 qubits) and N = 16 (4 qubits) on a real hardware.
In particular, let us use the IQM Garnet machine developed by IQM, a Finnish-German
quantum computer manufacturer. The experimental results (based on 20, 000 shots) of the
QFT routine provided in Qiskit by IBM [4] on IQM Garnet are reported in Fig. E.17. These
results should be considered indicative, as real hardware in the NISQ era is influenced by
environmental conditions, causing actual outcomes to vary slightly from run to run.

Appendix F. Example codes for VQE

In this Appendix, we provide some example codes for implementing the Variational
Quantum Eigensolver (VQE) algorithm. Let us start with the Qiskit language [4] by IBM
as a popular open-source software development kit. In Qiskit, the VQE can be implemented
as follows.

import numpy as np

from qiskit.circuit.library import EfficientSU2

from qiskit.quantum_info import SparsePauliOp

from qiskit.primitives import StatevectorEstimator as Estimator

from scipy.optimize import minimize

num_qubits = 3 # number of qubits

N = pow(2, num_qubits) # number of mesh nodes

for i in range(N):

T_old[i] = 1 + (1/2)*np.sin(2*np.pi*(i+1)/N)
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TT_old = np.sum(T_old **2)

b0 = np.sqrt(TT_old)

b = T_old/b0 # initial profile

# (1) ANSATZ

raw_ansatz = EfficientSU2(num_qubits)

# Initial (arbitrary) set of parameter

theta0 = np.ones(raw_ansatz.num_parameters)

# (2) OBSERVABLE = HAMILTONIAN = "ENERGY"

# Conduction matrix

r = 0.5 # = delta_t*alpha/( delta_x **2) = Fo, Fourier number

d = np.ones(N)*(1+2*r)

od = np.ones(N-1)*(-r)

C = np.diag(d, 0) + np.diag(od, -1) + np.diag(od, 1)

C[0,N-1] = -r

C[N-1,0] = -r

O = np.identity(N)-np.outer(b,b)

O = np.matmul(O,C)

C_dag = np.transpose(C)

O = np.matmul(C_dag ,O)

observable = SparsePauliOp.from_operator(O)

# (3) ESTIMATOR , quantum simulator

estimator = Estimator ()

# LOSS FUNCTION

def cost_func_vqe(params , ansatz , hamiltonian , estimator):

""" Return estimate of energy from estimator

Parameters:

params (ndarray): Array of ansatz parameters

ansatz (QuantumCircuit): Parameterized ansatz circuit

hamiltonian (SparsePauliOp): Operator representation of

Hamiltonian

estimator (Estimator): Estimator primitive instance

Returns:

float: Energy estimate

"""

pub = (ansatz , hamiltonian , params)

cost = estimator.run([pub]).result ()[0]. data.evs

return cost
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# MINIMIZATION STEP

result = minimize(cost_func_vqe , theta0 , args=( raw_ansatz.decompose

(), observable , estimator),

method="COBYLA", # minimization method

tol = 1e-3, # which affects iterations/time

options ={’maxiter ’: 1000, ’disp’: True})

While the physics side of quantum computing makes significant progress, the support
for high-level quantum programming abstractions is still in its infancy compared to modern
classical languages and frameworks [11]. An interesting example is provided by Qrisp, which
is a high-level programming language developed by Fraunhofer for creating and compiling
quantum algorithms [11]. Its structured programming model enables scalable development
and maintenance [11]. In Qrisp, the VQE can be implemented as follows.

import numpy as np

from qrisp import *

from qrisp.operators import QubitOperator

from qrisp.vqe.vqe_problem import *

num_qubits = 3 # number of qubits

N = pow(2, num_qubits) # number of mesh nodes

# (1) ANSATZ

def ansatz(qv ,theta):

for i in range(num_qubits):

ry(theta[i],qv[i])

for i in range(num_qubits -1):

cx(qv[i],qv[i+1])

cx(qv[num_qubits -1],qv[0])

# (2) OBSERVABLE = HAMILTONIAN = "ENERGY"

H = QubitOperator.from_matrix(O).to_pauli ()

# (3) ESTIMATOR , quantum simulator

# Default , if ’backend ’ is not specified

# VQE PROBLEM

vqe = VQEProblem(hamiltonian = H,

ansatz_function = ansatz ,

num_params = 3,

callback = True)

# MINIMIZATION STEP

qarg = QuantumVariable(num_qubits)

energy = vqe.run(qarg ,
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depth = 4,

max_iter = 1000,

mes_kwargs ={’precision ’:0.1,’diagonalisation_method ’:’

commuting ’})
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Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
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